期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Study on High Rate Discharge Performance and Mechanism of AB_5 Type Hydrogen Storage Alloys 被引量:6
1
作者 郭靖洪 陈德敏 +3 位作者 于军 张建海 刘国忠 杨柯 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第4期509-513,共5页
The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, di... The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability. 展开更多
关键词 storage energy technology hydrogen storage alloy discharge capacity ACTIVITY high rate dischargeability rare earths
下载PDF
Novel High Rate Lithium Intercalation Cathode Materials 被引量:1
2
作者 张勇 刘玉文 +1 位作者 程玉山 胡信国 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第6期701-705,共5页
Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium o... Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3. Even at 10 A·g^-1 current density, a capacity of about 250 mAh·g^-1 was obtained at 25 ℃. This enhanced rate capability and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion. 展开更多
关键词 COMPOSITE neodymium oxide lithium rechargeable batteries high rate discharge CATHODE rare earths
下载PDF
High tap density of Ni_3(PO_4)_2 coated LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 with enhanced cycling performance at high cut-off voltage
3
作者 崔妍 徐盛明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期315-320,共6页
The Li Ni1/3Co1/3Mn1/3O2 is first obtained by the controlled crystallization method and then coated with Ni3(PO4)2particles. The effects of the coating on rate capability and cycle life at high cut-off voltage are inv... The Li Ni1/3Co1/3Mn1/3O2 is first obtained by the controlled crystallization method and then coated with Ni3(PO4)2particles. The effects of the coating on rate capability and cycle life at high cut-off voltage are investigated by electrochemical impedance spectroscopy and galvanostatic measurements. The element ratio of Ni:Mn:Co is tested by inductively-coupled plasma spectrometer(ICP) analysis and it testified to be 1:1:1. It is indicated that Ni3(PO4)2-coated Li Ni1/3Co1/3Mn1/3O2 has an outstanding capacity retention, where 99% capacity retention is maintained after 10 cycles at 5C discharge rate between 2.7 V and 4.6 V. The electrochemical impedance spectroscopy(EIS) results show that the current exchange density i0 of the coated sample is higher than that of Li Ni1/3Co1/3Mn1/3O2, which is beneficial to its electrochemical performances. All the conclusions show that the Ni3(PO4)2coating can prominently enhance the high rate performance of the Li Ni1/3Co1/3Mn1/3O2, especially at high cut-off voltage. 展开更多
关键词 LiNi1/3Co1/3Mn1/3O2cathode material Electrochemistry Ni3(PO4)2coating high tap density high rate discharge capacity
下载PDF
Structure and electrochemical properties of low-cobalt La_(1-x)Li_xNi_(3.2)Co_(0.3)Al_(0.3) (0≤x≤0.2) hydrogen storage electrode alloys 被引量:2
4
作者 WEI Xuedong LIU Yongning ZHANG Peng 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期1-6,共6页
The structure and electrochemical properties of a new low cobalt hydrogen storage electrode alloys La1-xLixNi3.2Co0.3Al0.3 (0≤x≤0.2) were investigated with a different additions of Li in replacement of La. With the ... The structure and electrochemical properties of a new low cobalt hydrogen storage electrode alloys La1-xLixNi3.2Co0.3Al0.3 (0≤x≤0.2) were investigated with a different additions of Li in replacement of La. With the increase of Li contents the maximum discharge capacity increases from 240 mAh·g-1(x=0) to 328.4 mAh·g-1(x=0.1) and the cycle stability is improved correspondingly. The capacity decay can remain 28.6% (x=0.2) after 230 charge/discharge cycles. The high rate discharge(HRD) ability of the alloys(x≤0.1) is improved and the best HRD is 34.1%(x=0.1) under the discharge current density 1200 mA·g-1. It is found that the prepared alloys are basically composed of LaNi5 as matrix phase and LaNi3 as second phase(x≤0.1). But the abundance of LaNi3 phase dramatically decreases with increasing x. When x=0.2, a new phase Al(NiCo)3 is formed. 展开更多
关键词 hydrogen storage alloy microstructure high rate discharge ability cycling stability
下载PDF
Microstructure and electrochemical properties of La0.8-xMMxMg0.2Ni3.1Co0.3Al0.1(x=0,0.1,0.2,0.3)alloys 被引量:2
5
作者 Na Zhou Wen-Bo Du +4 位作者 Pei-Long Zhang Yong-Guo Zhu Zhao-Hui Wang Ke Liu Shu-Bo Li 《Rare Metals》 SCIE EI CAS CSCD 2017年第8期645-650,共6页
The present study aims to improve electrochemical properties of the La-Mg-Ni-based hydrogen storage alloys through partial substitution for La by mischmetal(MM).The La_(0.8-x)MM_xMg_(0.2)Ni_(3.1)Co_(0.3)Al_... The present study aims to improve electrochemical properties of the La-Mg-Ni-based hydrogen storage alloys through partial substitution for La by mischmetal(MM).The La_(0.8-x)MM_xMg_(0.2)Ni_(3.1)Co_(0.3)Al_(0.1)(x=0,0.1,0.2,0.3)alloys were prepared by inductive melting,and their phase structures and electrochemical properties were studied by X-ray diffraction(XRD),scanning electron microscope(SEM),energy-dispersive X-ray spectrometry(EDX)and electrochemical tests.Results show that the alloys mainly consist of La_2Ni_7-type phase,La_5Ni_(19)-type phase,LaNi_5-type phase and LaNi_3-type phase.The addition of MM does not change the phase compositions,while it leads to more uniform phase distribution and obviously promotes the formation of La_2Ni_7-type phase which possesses favorable electrochemical properties.Electrochemical studies indicate that the substitution for La by MM could effectively improve the high rate dischargeability(HRD)of the alloy electrode,and the optimal value of HRD_(1500)(HRD at 1500 mA·g^(-1))increases from 40.63%(x=0)to 60.55%(x=0.3).Although the activation properties of the alloy electrodes keep almost unchanged,both the maximum discharge capacity(C_(max))and the cycling stability are significantly improved by MM addition. 展开更多
关键词 Hydrogen storage alloy MICROSTRUCTURE discharge capacity high rate dischargeability Cyclingstability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部