Energy efficiency can be improved by reducing the amount of energy that we demand, and by changing our behaviors to reduce the amount of energy that we waste. This scheme manipulates the problem of incremental demand,...Energy efficiency can be improved by reducing the amount of energy that we demand, and by changing our behaviors to reduce the amount of energy that we waste. This scheme manipulates the problem of incremental demand, and low Power Factor (PF) for industrial plants, starting with walk through surveys, data analysis, providing advices to insure personnel involvement, and suggestions of practical circuits to attain the target. Elements of effective energy management program can be configured of management commitment, audit, analysis and implementation. Energy management opportunities can he operational and maintenance strategies, retrofit or modification strategies and new design strategies. The new technique of Power Factor Correction (PFC) that has been designed was the High Active Boost Power Factor Correction Pre-regulator Circuit, which was resulted in single / three phase PFC of about unity, in hand with a regulated output single phase voltage of about 220 VAC.展开更多
Dust collection systems represent a significant portion of a wood product manufacturer’s total electricity use. The system fan works against the static pressure of the entire system—the blast gates, the ductwork, an...Dust collection systems represent a significant portion of a wood product manufacturer’s total electricity use. The system fan works against the static pressure of the entire system—the blast gates, the ductwork, and the upstream or downstream cyclone and/or baghouse. A poor system design (e.g., sharp elbows or undersized ductwork) increases the total amount of static pressure in the system, the fan’s performance curve shifts, increasing the total brake horsepower required by the fan (up to the maximum point on the curve). Additionally, system designers may oversize a dust collection system to ensure adequate dust capture and transport, either to accommodate system expansion or simply to be conservative. Since theoretical fan energy use increases with its velocity cubed, this can be an expensive safety net. This paper presents a comprehensive literature review about industrial cyclone dust collectors energy saving in relation to management, technologies, and policies. Energy-saving technologies like high-efficiency motors (HEMs), variable-speed drives (VSDs), leak detection, and pressure drop reduction have all been examined. Based on energy saving technologies results, it has been found that in the industrial sectors, a sizeable amount of electric energy, and utility bill can be saved using these technologies. Finally, various energy-saving policies were reviewed.展开更多
This paper discusses the prospect of high efficiency motors based on usage in industrial sectors. In fact, energy consumption is globally classified into the industrial sector, transport system, residential and commer...This paper discusses the prospect of high efficiency motors based on usage in industrial sectors. In fact, energy consumption is globally classified into the industrial sector, transport system, residential and commercial building, agriculture and others sectors. In all the sectors, energy is eventually consumed by electrical appliances and equipments and the industrial sector accounts for the largest share of the overall energy consumption. The study concerns to identify the energy consumption using qualitative method. The main emphasis was given to comparison of the motor with high efficiency motors (HEMs) and traditional standard motors to investigate energy savings. According to the study, industrial sector has up to 25% of electrical energy conservation potential. Almost 70%-75% of the electrical energy consumption in industry is on account of use of electrical motors being used by pumps, fans, compressors and other motor driven system. Therefore, the potential for energy conservation through electric motors is quite high. Using high efficiency motors (HEMs) can thus reduce the losses and hence save vital energy costs. This paper will provide a contribution to electrical motors arena and will be a systematic knowledge base for researchers in this field.展开更多
文摘Energy efficiency can be improved by reducing the amount of energy that we demand, and by changing our behaviors to reduce the amount of energy that we waste. This scheme manipulates the problem of incremental demand, and low Power Factor (PF) for industrial plants, starting with walk through surveys, data analysis, providing advices to insure personnel involvement, and suggestions of practical circuits to attain the target. Elements of effective energy management program can be configured of management commitment, audit, analysis and implementation. Energy management opportunities can he operational and maintenance strategies, retrofit or modification strategies and new design strategies. The new technique of Power Factor Correction (PFC) that has been designed was the High Active Boost Power Factor Correction Pre-regulator Circuit, which was resulted in single / three phase PFC of about unity, in hand with a regulated output single phase voltage of about 220 VAC.
文摘Dust collection systems represent a significant portion of a wood product manufacturer’s total electricity use. The system fan works against the static pressure of the entire system—the blast gates, the ductwork, and the upstream or downstream cyclone and/or baghouse. A poor system design (e.g., sharp elbows or undersized ductwork) increases the total amount of static pressure in the system, the fan’s performance curve shifts, increasing the total brake horsepower required by the fan (up to the maximum point on the curve). Additionally, system designers may oversize a dust collection system to ensure adequate dust capture and transport, either to accommodate system expansion or simply to be conservative. Since theoretical fan energy use increases with its velocity cubed, this can be an expensive safety net. This paper presents a comprehensive literature review about industrial cyclone dust collectors energy saving in relation to management, technologies, and policies. Energy-saving technologies like high-efficiency motors (HEMs), variable-speed drives (VSDs), leak detection, and pressure drop reduction have all been examined. Based on energy saving technologies results, it has been found that in the industrial sectors, a sizeable amount of electric energy, and utility bill can be saved using these technologies. Finally, various energy-saving policies were reviewed.
文摘This paper discusses the prospect of high efficiency motors based on usage in industrial sectors. In fact, energy consumption is globally classified into the industrial sector, transport system, residential and commercial building, agriculture and others sectors. In all the sectors, energy is eventually consumed by electrical appliances and equipments and the industrial sector accounts for the largest share of the overall energy consumption. The study concerns to identify the energy consumption using qualitative method. The main emphasis was given to comparison of the motor with high efficiency motors (HEMs) and traditional standard motors to investigate energy savings. According to the study, industrial sector has up to 25% of electrical energy conservation potential. Almost 70%-75% of the electrical energy consumption in industry is on account of use of electrical motors being used by pumps, fans, compressors and other motor driven system. Therefore, the potential for energy conservation through electric motors is quite high. Using high efficiency motors (HEMs) can thus reduce the losses and hence save vital energy costs. This paper will provide a contribution to electrical motors arena and will be a systematic knowledge base for researchers in this field.