In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu<sub>3</sub>O<sub>6+z</sub> (Ln = Eu, Sm, Nd) compounds. We focused on prepar...In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu<sub>3</sub>O<sub>6+z</sub> (Ln = Eu, Sm, Nd) compounds. We focused on preparation, X-ray diffraction with Rietveld refinement, AC susceptibility, DC resistivity measurements, and heat treatment effects. Two heat treatment types were applied: oxygen annealing [O] and argon annealing followed by oxygen annealing [AO]. As the rare earth Ln’s ionic radius increased, certain parameters notably changed. Specifically, c parameter, surface area S, and volume V increased, while critical temperature Tc and holes (p) in the CuO<sub>2</sub> plane decreased. The evolution of these parameters with rare earth Ln’s ionic radius in [AO] heat treatment is linear. Regardless of the treatment, the structure is orthorhombic for Ln = Eu, tetragonal for Ln = Nd, orthorhombic for Ln = Sm [AO], and pseudo-tetragonal for Sm [O]. The highest critical temperature is reached with Ln = Eu (Tc [AO] = 87.1 K). Notably, for each sample, Tc [AO] surpasses Tc [O]. Observed data stems from factors including rare earth ionic size, improved cationic and oxygen chain order, holes count p in Cu(2)O<sub>2</sub> planes, and in-phase purity of [AO] samples. Our research strives to clearly demonstrate that the density of holes (p) within the copper plane stands as a determinant impacting the structural, electrical, and superconducting properties of these samples. Meanwhile, the other aforementioned parameters contribute to shaping this density (p).展开更多
High current pulsed electron beam (HCPEB) has been developed as a useful tool for surface treatment of materials.In the present work,the fundamental principle of HCPEB source was described along with the device config...High current pulsed electron beam (HCPEB) has been developed as a useful tool for surface treatment of materials.In the present work,the fundamental principle of HCPEB source was described along with the device configuration and working parameters.Through the different kinds of HCPEB surface treatment experiments conducted,the enhanced surface properties induced by HPCEB treatment were illustrated and explained with their microstructure characterization results.展开更多
As a means of surface modification process, metal surface nanocrystallization (MSN) has attracted widespread attention and enjoyed a great prospect. However, currently little research is carried out regarding MSN of...As a means of surface modification process, metal surface nanocrystallization (MSN) has attracted widespread attention and enjoyed a great prospect. However, currently little research is carried out regarding MSN of welded joint. The processes of high energy shot peening (HESP) technology and ultrasonic impact treatment (UIT) were carried out to achieve joint surface nanocrystallization. The grain size of before and after the welded joint surface nanocrystallization were comparatively analyzed with X-ray diffractometer, the surface deformation layer thickness of before and after the welded joint surface nanocrystallization were comparatively analyzed with optical microscopy, the surface hardness of before and after the welded joint surface nanocrystallization were comparatively analyzed with micro hardness machine. The results show that both of the processes can achieve welded joint surface nanocrystaUization and the weld after HESP have smaller grain size, larger deformation layer thickness and higher hardness values than those after UIT. However, HESP is restrained by the shapes and sizes of welding materials, so the UIT process is preferred to use in the general engineering practical applications.展开更多
Non-Fourier heat conduction induced by ultrafast heating of metals with a high-energy density beam was analyzed. The non-Fourier effects during high heat flux heating were illustrated by comparing the transient temp...Non-Fourier heat conduction induced by ultrafast heating of metals with a high-energy density beam was analyzed. The non-Fourier effects during high heat flux heating were illustrated by comparing the transient temperature response to different heat flux and material relaxation times. Based on the hyperbolic heat conduction equation for the non-Fourier heat conduction law, the equation was solved using a hybrid method combining an analytical solution and numerical inversion of the Laplace transforms for a semi- infinite body with the heat flux boundary. Analysis of the temperature response and distribution led to a crite- rion for the applicability of the non-Fourier heat conduction law. The results show that at a relatively large heat flux, such as greater than 108 W/cm2, the heat-affected zone in the metal material experiences a strong thermal shock as the non-Fourier effects cause a large step increase in the surface temperature. The results provide a method for analyzing transient heat conduction problems using a high-energy density beam, such as electron beam deep penetration welding.展开更多
文摘In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu<sub>3</sub>O<sub>6+z</sub> (Ln = Eu, Sm, Nd) compounds. We focused on preparation, X-ray diffraction with Rietveld refinement, AC susceptibility, DC resistivity measurements, and heat treatment effects. Two heat treatment types were applied: oxygen annealing [O] and argon annealing followed by oxygen annealing [AO]. As the rare earth Ln’s ionic radius increased, certain parameters notably changed. Specifically, c parameter, surface area S, and volume V increased, while critical temperature Tc and holes (p) in the CuO<sub>2</sub> plane decreased. The evolution of these parameters with rare earth Ln’s ionic radius in [AO] heat treatment is linear. Regardless of the treatment, the structure is orthorhombic for Ln = Eu, tetragonal for Ln = Nd, orthorhombic for Ln = Sm [AO], and pseudo-tetragonal for Sm [O]. The highest critical temperature is reached with Ln = Eu (Tc [AO] = 87.1 K). Notably, for each sample, Tc [AO] surpasses Tc [O]. Observed data stems from factors including rare earth ionic size, improved cationic and oxygen chain order, holes count p in Cu(2)O<sub>2</sub> planes, and in-phase purity of [AO] samples. Our research strives to clearly demonstrate that the density of holes (p) within the copper plane stands as a determinant impacting the structural, electrical, and superconducting properties of these samples. Meanwhile, the other aforementioned parameters contribute to shaping this density (p).
基金Foundation item:NSFC(11075028)Fundamental Research Funds for the Central Universities(DUT10LK07)
文摘High current pulsed electron beam (HCPEB) has been developed as a useful tool for surface treatment of materials.In the present work,the fundamental principle of HCPEB source was described along with the device configuration and working parameters.Through the different kinds of HCPEB surface treatment experiments conducted,the enhanced surface properties induced by HPCEB treatment were illustrated and explained with their microstructure characterization results.
基金supported by the National Natural Science Foundation(No.50765003)and the National Natural Science Foundation(No.51165026)
文摘As a means of surface modification process, metal surface nanocrystallization (MSN) has attracted widespread attention and enjoyed a great prospect. However, currently little research is carried out regarding MSN of welded joint. The processes of high energy shot peening (HESP) technology and ultrasonic impact treatment (UIT) were carried out to achieve joint surface nanocrystallization. The grain size of before and after the welded joint surface nanocrystallization were comparatively analyzed with X-ray diffractometer, the surface deformation layer thickness of before and after the welded joint surface nanocrystallization were comparatively analyzed with optical microscopy, the surface hardness of before and after the welded joint surface nanocrystallization were comparatively analyzed with micro hardness machine. The results show that both of the processes can achieve welded joint surface nanocrystaUization and the weld after HESP have smaller grain size, larger deformation layer thickness and higher hardness values than those after UIT. However, HESP is restrained by the shapes and sizes of welding materials, so the UIT process is preferred to use in the general engineering practical applications.
基金Supported by the National Defense Science Foundation of China and the Special Fund of Colleges and Universities for Doctoral Study
文摘Non-Fourier heat conduction induced by ultrafast heating of metals with a high-energy density beam was analyzed. The non-Fourier effects during high heat flux heating were illustrated by comparing the transient temperature response to different heat flux and material relaxation times. Based on the hyperbolic heat conduction equation for the non-Fourier heat conduction law, the equation was solved using a hybrid method combining an analytical solution and numerical inversion of the Laplace transforms for a semi- infinite body with the heat flux boundary. Analysis of the temperature response and distribution led to a crite- rion for the applicability of the non-Fourier heat conduction law. The results show that at a relatively large heat flux, such as greater than 108 W/cm2, the heat-affected zone in the metal material experiences a strong thermal shock as the non-Fourier effects cause a large step increase in the surface temperature. The results provide a method for analyzing transient heat conduction problems using a high-energy density beam, such as electron beam deep penetration welding.