In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un...In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain ...Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1.展开更多
Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainabi...Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur areal loading is vital for the practical applications of Li–S batteries with very high energy density.However,the high sulfur loading in an electrode results in poor rate and cycling performances of batteries in most cases.Herein,we used diameters of 5.0(D5)and 13.0(D13)mm to probe the effect of electrodes with different sizes on the rate and cycling performances under a high sulfur loading(4.5 mg cm^-2).The cell with D5 sulfur cathode exhibits better rate and cycling performances comparing with a large(D13)cathode.Both the high concentration of lithium polysulfides and corrosion of lithium metal anode impede rapid kinetics of sulfur redox reactions,which results in inferior battery performance of the Li–S cell with large diameter cathode.This work highlights the importance of rational matching of the large sulfur cathode with a high areal sulfur loading,carbon modified separators,organic electrolyte,and Li metal anode in a pouch cell,wherein the sulfur redox kinetics and lithium metal protection should be carefully considered under the flooded lithium polysulfide conditions in a working Li–S battery.展开更多
Flexible supercapacitor electrodes with high mass loading are crucial for obtaining favorable electrochemical performance but still challenging due to sluggish electron and ion transport.Herein,rationally designed CNT...Flexible supercapacitor electrodes with high mass loading are crucial for obtaining favorable electrochemical performance but still challenging due to sluggish electron and ion transport.Herein,rationally designed CNT/MnO2/graphene-grafted carbon cloth electrodes are prepared by a“graft-deposit-coat”strategy.Due to the large surface area and good conductivity,graphene grafted on carbon cloth offers additional surface areas for the uniform deposition of MnO2(9.1 mg cm?2)and facilitates charge transfer.Meanwhile,the nanostructured MnO2 provides abundant electroactive sites and short ion transport distance,and CNT coated on MnO2 acts as interconnected conductive“highways”to accelerate the electron transport,significantly improving redox reaction kinetics.Benefiting from high mass loading of electroactive materials,favorable conductivity,and a porous structure,the electrode achieves large areal capacitances without compromising rate capability.The assembled asymmetric supercapacitor demonstrates a wide working voltage(2.2 V)and high energy density of 10.18 mWh cm?3.展开更多
Lithium-sulfur batteries(LSBs)are promising alternative energy storage devices to the commercial lithium-ion batteries.However,the LSBs have several limitations including the low electronic conductivity of sulfur(5...Lithium-sulfur batteries(LSBs)are promising alternative energy storage devices to the commercial lithium-ion batteries.However,the LSBs have several limitations including the low electronic conductivity of sulfur(5×10^-30S cm^-1),associated lithium polysulfides(PSs),and their migration from the cathode to the anode.In this study,a separator coated with a Ketjen black(KB)/Nafion composite was used in an LSB with a sulfur loading up to 7.88 mg cm^-2to mitigate the PS migration.A minimum specific capacity(Cs)loss of 0.06%was obtained at 0.2 C-rate at a high sulfur loading of 4.39 mg cm^-2.Furthermore,an initial areal capacity up to 6.70 mAh cm^-2 was obtained at a sulfur loading of 7.88 mg cm^-2.The low Cs loss and high areal capacity associated with the high sulfur loading are attributed to the large surface area of the KB and sulfonate group(SO3^-)of Nafion,respectively,which could physically and chemically trap the PSs.展开更多
The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the st...The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the stress—strain curve of the rock under static-dynamic coupled loading is a typical class I curve when the dynamic load is comparatively high; With the decrease of the dynamic load, the stress—strain curve transforms to a typical class II curve. The dynamic failure process was recorded by high-speed photography. Analyses of fracture surface morphology show that the failure modes of specimens are tensile failure or combined shear failure when the impact load energy is low, but the failure modes of specimens become tensile failure when the impact load energy is high. The results of fractal dimension show that the elastic potential energy release leads to increase in the degree of crushing of samples when the energy of impact load is low under coupled static and dynamic loads with high stress.展开更多
To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with di...To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases.展开更多
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ...An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.展开更多
Lithium sulfur(Li-S)batteries are the promising power sources,but their commercialization is significantly impeded by poor energy-storage functions at high sulfur loading.Here we report that such an issue can be effec...Lithium sulfur(Li-S)batteries are the promising power sources,but their commercialization is significantly impeded by poor energy-storage functions at high sulfur loading.Here we report that such an issue can be effectively addressed by using a mussel-inspired binder comprised of chitosan grafted with catecholic moiety for sulfur cathodes.The resulting sulfur cathodes possess a high loading up to 12.2 mg cm-2 but also exhibit one of the best electrochemical properties among their counterparts.The excellent performances are attributed to the strong adhesion of the binder to sulfur particles,conducting agent,current collector,and polysulfide.The versatile adhesion effectively increases the sulfur loading,depresses the shuttle effect,and alleviates mechanical pulverization during cycling processes.The present investigation offers a new insight into high performance sulfur cathodes through a bio-adhesion viewpoint.展开更多
In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means t...In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.展开更多
In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic win...In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 ℃ at the highest power level.展开更多
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architec...The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation.A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase(Ti3C2Tx nanosheets) is performed,aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading.The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktej en black,not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host,but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode.The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness,which accounts a little contribution to the thick sulfur electrode;thus,the impacts on the energy density is minimal.By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator,a stable Li-S battery with high sulfur areal loading(5.6 mg cm-2) and high areal capacity(6.4 mAh cm-2) at relatively lean electrolyte is achieved.展开更多
Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of ...Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g-1at 0.1 C of the high loading electrode and 42 mAh·g-1at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion.展开更多
Background: The present study was designed to evaluate load carriage performance at extremely high altitudes with different loads and walking speeds in terms of physiological evaluation. The degree of maximum oxygen c...Background: The present study was designed to evaluate load carriage performance at extremely high altitudes with different loads and walking speeds in terms of physiological evaluation. The degree of maximum oxygen consumption changes at high altitudes was also examined.Methods: Twelve Indian Army soldiers were acclimatized at altitudes of 3,505 m and 4,300 m. They walked for 10 minutes on a motorized treadmill at 2.5km/h and 3.5km/h speeds during carrying no loads and three magnitudes of load(10.7kg, 21.4kg, 30kg) at both altitudes. Physiological parameters such as oxygen consumption, energy expenditure, heart rate, and ventilation were recorded for each breath using a gas analyzer. The rating of perceived exertion was also noted after each load carriage session. Maximal oxygen consumption(VO2max) was measured at sea level and the two high altitudes, and respective relative workloads(% of VO2max) were calculated from oxygen consumption. Repeated measure ANOVA was applied to reveal the significant effects of the independent variables.Results: The participants had significant reductions in VO2 max with rising altitude. Marked increases in almost all physiological parameters were observed with increasing load, altitude, and speed. The soldiers expressed heavy perceived exertion levels with higher loads at 3.5km/h at the two high altitudes.Conclusions: Considering the physiological responses, expressions of perceived exertion and changes in relative work load at both of the high altitudes. Indian soldiers are advised to walk slowly with adequate rest in between their schedules and to carry not more than 32% of their body weight.展开更多
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg...In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.展开更多
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein...Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.展开更多
A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium a...A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium alloy under high cyclic loading.Results show that geometrically necessary dislocations(GND)tend to accumulate around the microvoids,leading to an increment of average GND density.The influence of curvature in the tip plastic zone(TPZ)on GND density is greater than that of the size of the microvoid.As the curvature in TPZ and the size of the microvoid increase,the cumulative shear strain(CSS)in the primaryα,secondaryα,andβphases increases.Shear deformation in the prismatic slip system is dominant in the primaryαphase.As the distance between the microvoids increases,the interactive influence of the microvoids on the cumulative shear strain decreases.展开更多
Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3...Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3 D free-standing sulfur cathode scaffold is rationally designed and fabricated by coaxially coating polar Ti_3 C_2 T_x flakes on sulfur-impregnated carbon cloth(Ti_3 C_2 T_x@S/CC) to achieve high loading and high energy density Li-S batteries,in which,the flexible CC substrate with highly porous structure can accommodate large amounts of sulfur and ensure fast electron transfer,while the outer-coated Ti_3 C_2 T_x can serve as a polar and conductive protective layer to further promote the conductivity of the whole electrode,achieve physical blocking and chemical anchoring of lithium-polysulfides as well as catalyze their conversion.Due to these advantages,at a sulfur loading of 4 mg cm^(-2),Li-S cells with Ti_3 C_2 T_x@S/CC cathodes can deliver outstanding cycling stability(746.1 mAh g^(-1) after 200 cycles at1 C),superb rate performance(866.8 mAh g^(-1) up to 2 C) and a high specific energy density(564.2 Wh kg^(-1) after 100 cycles at 0.5 C).More significantly,they also show the commercial potential that can compete with current lithium-ion batteries due to the high areal capacity of 6.7 mAh cm^(-2) at the increased loading of 8 mg cm^(-2).展开更多
In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural stren...In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural strength of Al2O3 decreases with increasing specimen height at room temperature, and it tends to stability when height increases to a certain degree (h=5mm in this paper), while the flexural strength of Al2O3 variates unapparently at high temperature with increasing height. There is a critical loading rate R . c. When loading rate R . is less than R . c, the flexural strength of Al2O3 increases with increasing loading rate and it drops sharply when loading rate is higher than R . c. The sensitivity of flexural strength to the loading rate decreases with elevating temperatures.展开更多
To improve performance of membrane electrode assembly(MEA)at large current density region,efficient mass transfer at the cathode is desired,for which a feasible strategy is to lower catalyst layer thickness by constru...To improve performance of membrane electrode assembly(MEA)at large current density region,efficient mass transfer at the cathode is desired,for which a feasible strategy is to lower catalyst layer thickness by constructing high loading Pt-alloy catalysts on carbon.But the high loading may induce unwanted par-ticle aggregation.In this work,H-PtNi/C with 33%(mass)Pt loading on carbon and monodisperse distri-bution of 3.55 nm PtNi nanoparticles,was prepared by a bimodal-pore route.In electrocatalytic oxygen reduction reaction(ORR),H-PtNi/C displays an activity inferior to the low Pt loading catalyst L-PtNi/C(13.3%(mass))in the half-cell.While in H_(2)-0_(2) MEA,H-PtNi/C delivers the peak power density of 1.51 W·cm^(-2) and the mass transfer limiting current density of 4.4 A·cm^(-2),being 21%and 16%higher than those of L-PtNi/C(1.25 W·cm^(-2),3.8 A·cm^(-2))respectively,which can be ascribed to enhanced mass trans-fer brought by the thinner catalyst layer in the former.In addition,the same method can be used to pre-pare PtFe alloy catalyst with a high-Pt loading of 36%(mass).This work may lead to a range of catalyst materials for the large current density applications,such as fuel cell vehicles.展开更多
基金funded by the National Key R&D Program of China,Grant Number 2019YFB1505400.
文摘In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.
基金supported by National Natural Science Foundation of China(Nos.51972346,51932011,51802356,and 51872334)Innovation-Driven Project of Central South University(No.2018CX004).
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1.
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the National Natural Science Foundation of China(21776019,21805162,51772069,and U1801257)+1 种基金China Postdoctoral Science Foundation(2018M630165)Beijing Key Research and Development Plan(Z181100004518001)
文摘Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur areal loading is vital for the practical applications of Li–S batteries with very high energy density.However,the high sulfur loading in an electrode results in poor rate and cycling performances of batteries in most cases.Herein,we used diameters of 5.0(D5)and 13.0(D13)mm to probe the effect of electrodes with different sizes on the rate and cycling performances under a high sulfur loading(4.5 mg cm^-2).The cell with D5 sulfur cathode exhibits better rate and cycling performances comparing with a large(D13)cathode.Both the high concentration of lithium polysulfides and corrosion of lithium metal anode impede rapid kinetics of sulfur redox reactions,which results in inferior battery performance of the Li–S cell with large diameter cathode.This work highlights the importance of rational matching of the large sulfur cathode with a high areal sulfur loading,carbon modified separators,organic electrolyte,and Li metal anode in a pouch cell,wherein the sulfur redox kinetics and lithium metal protection should be carefully considered under the flooded lithium polysulfide conditions in a working Li–S battery.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF2018R1D1A1B07051249)Nano Material Technology Development Program(NRF-2015M3A7B6027970)of MSIP/NRF and Center for Integrated Smart Sensors funded by the Ministry of Science,ICTFuture Planning,Republic of Korea,as Global Frontier Project(CISS-2012M3A6A6054186).
文摘Flexible supercapacitor electrodes with high mass loading are crucial for obtaining favorable electrochemical performance but still challenging due to sluggish electron and ion transport.Herein,rationally designed CNT/MnO2/graphene-grafted carbon cloth electrodes are prepared by a“graft-deposit-coat”strategy.Due to the large surface area and good conductivity,graphene grafted on carbon cloth offers additional surface areas for the uniform deposition of MnO2(9.1 mg cm?2)and facilitates charge transfer.Meanwhile,the nanostructured MnO2 provides abundant electroactive sites and short ion transport distance,and CNT coated on MnO2 acts as interconnected conductive“highways”to accelerate the electron transport,significantly improving redox reaction kinetics.Benefiting from high mass loading of electroactive materials,favorable conductivity,and a porous structure,the electrode achieves large areal capacitances without compromising rate capability.The assembled asymmetric supercapacitor demonstrates a wide working voltage(2.2 V)and high energy density of 10.18 mWh cm?3.
基金the Australian Government and University of Queensland for the research training program scholarship and research facilities used in this study.
文摘Lithium-sulfur batteries(LSBs)are promising alternative energy storage devices to the commercial lithium-ion batteries.However,the LSBs have several limitations including the low electronic conductivity of sulfur(5×10^-30S cm^-1),associated lithium polysulfides(PSs),and their migration from the cathode to the anode.In this study,a separator coated with a Ketjen black(KB)/Nafion composite was used in an LSB with a sulfur loading up to 7.88 mg cm^-2to mitigate the PS migration.A minimum specific capacity(Cs)loss of 0.06%was obtained at 0.2 C-rate at a high sulfur loading of 4.39 mg cm^-2.Furthermore,an initial areal capacity up to 6.70 mAh cm^-2 was obtained at a sulfur loading of 7.88 mg cm^-2.The low Cs loss and high areal capacity associated with the high sulfur loading are attributed to the large surface area of the KB and sulfonate group(SO3^-)of Nafion,respectively,which could physically and chemically trap the PSs.
基金Projects (10872218, 50934006) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by National Basic Research Program of ChinaProject (2011ssxt276) supported by the Central South University Innovation Fund, China
文摘The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the stress—strain curve of the rock under static-dynamic coupled loading is a typical class I curve when the dynamic load is comparatively high; With the decrease of the dynamic load, the stress—strain curve transforms to a typical class II curve. The dynamic failure process was recorded by high-speed photography. Analyses of fracture surface morphology show that the failure modes of specimens are tensile failure or combined shear failure when the impact load energy is low, but the failure modes of specimens become tensile failure when the impact load energy is high. The results of fractal dimension show that the elastic potential energy release leads to increase in the degree of crushing of samples when the energy of impact load is low under coupled static and dynamic loads with high stress.
基金the National Natural Science Foundation of China under Grant No.51478244
文摘To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases.
基金Project(51078294)supported by the National Natural Science Foundation of ChinaProject(201101411100025)supported by the Doctoral Fund of Ministry of Education of China
文摘An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.
基金supported by the National Natural Science Foundation of China(51473041)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51521003)+2 种基金China Postdoctoral Science Foundation(no.2017M621262)Fundamental Research Funds for the Central Universities(No.HIT.NSRIF.201831)Postdoctoral Foundation of Hei long Jiang Province(LBH-Z17065)。
文摘Lithium sulfur(Li-S)batteries are the promising power sources,but their commercialization is significantly impeded by poor energy-storage functions at high sulfur loading.Here we report that such an issue can be effectively addressed by using a mussel-inspired binder comprised of chitosan grafted with catecholic moiety for sulfur cathodes.The resulting sulfur cathodes possess a high loading up to 12.2 mg cm-2 but also exhibit one of the best electrochemical properties among their counterparts.The excellent performances are attributed to the strong adhesion of the binder to sulfur particles,conducting agent,current collector,and polysulfide.The versatile adhesion effectively increases the sulfur loading,depresses the shuttle effect,and alleviates mechanical pulverization during cycling processes.The present investigation offers a new insight into high performance sulfur cathodes through a bio-adhesion viewpoint.
基金supported by the National Key Technology R&D Program (Grant 2011BAJ02B01-02)the National Natural Science Foundation of China (Grant 11602065)
文摘In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
文摘In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 ℃ at the highest power level.
基金financially supported by National Key Research and Development Program(No.2019YFA0210600)the Major Technological Innovation Project of Hubei Science and Technology Department(No.2019AAA164)+1 种基金the National Natural Science Foundation of China(No.51972107)the Innovative Research Groups of Hunan Province(No.2019JJ10001)。
文摘The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation.A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase(Ti3C2Tx nanosheets) is performed,aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading.The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktej en black,not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host,but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode.The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness,which accounts a little contribution to the thick sulfur electrode;thus,the impacts on the energy density is minimal.By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator,a stable Li-S battery with high sulfur areal loading(5.6 mg cm-2) and high areal capacity(6.4 mAh cm-2) at relatively lean electrolyte is achieved.
基金supported by the National Natural Science Foundation of China (NSFC 21103184)the Ph.D.Programs Foundation (20100041110017) of Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities
文摘Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g-1at 0.1 C of the high loading electrode and 42 mAh·g-1at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion.
基金funded through Project No.S&T-09/DIP-251,C3.0 from the Defence Research and Development Organization(DRDO),Ministry of Defence,Government of India
文摘Background: The present study was designed to evaluate load carriage performance at extremely high altitudes with different loads and walking speeds in terms of physiological evaluation. The degree of maximum oxygen consumption changes at high altitudes was also examined.Methods: Twelve Indian Army soldiers were acclimatized at altitudes of 3,505 m and 4,300 m. They walked for 10 minutes on a motorized treadmill at 2.5km/h and 3.5km/h speeds during carrying no loads and three magnitudes of load(10.7kg, 21.4kg, 30kg) at both altitudes. Physiological parameters such as oxygen consumption, energy expenditure, heart rate, and ventilation were recorded for each breath using a gas analyzer. The rating of perceived exertion was also noted after each load carriage session. Maximal oxygen consumption(VO2max) was measured at sea level and the two high altitudes, and respective relative workloads(% of VO2max) were calculated from oxygen consumption. Repeated measure ANOVA was applied to reveal the significant effects of the independent variables.Results: The participants had significant reductions in VO2 max with rising altitude. Marked increases in almost all physiological parameters were observed with increasing load, altitude, and speed. The soldiers expressed heavy perceived exertion levels with higher loads at 3.5km/h at the two high altitudes.Conclusions: Considering the physiological responses, expressions of perceived exertion and changes in relative work load at both of the high altitudes. Indian soldiers are advised to walk slowly with adequate rest in between their schedules and to carry not more than 32% of their body weight.
文摘In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.
基金Korea Institute of Energy Technology Evaluation and Planning,Grant/Award Number:20214000000320Samsung Research Funding&Incubation Center of Samsung Electronics,Grant/Award Number:SRFC-MA1901-06。
文摘Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.
基金the National Key Research and Development Program of China(No.2021YFB3702603).
文摘A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium alloy under high cyclic loading.Results show that geometrically necessary dislocations(GND)tend to accumulate around the microvoids,leading to an increment of average GND density.The influence of curvature in the tip plastic zone(TPZ)on GND density is greater than that of the size of the microvoid.As the curvature in TPZ and the size of the microvoid increase,the cumulative shear strain(CSS)in the primaryα,secondaryα,andβphases increases.Shear deformation in the prismatic slip system is dominant in the primaryαphase.As the distance between the microvoids increases,the interactive influence of the microvoids on the cumulative shear strain decreases.
基金supported by the National Natural Science Foundation of China (51772069)。
文摘Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3 D free-standing sulfur cathode scaffold is rationally designed and fabricated by coaxially coating polar Ti_3 C_2 T_x flakes on sulfur-impregnated carbon cloth(Ti_3 C_2 T_x@S/CC) to achieve high loading and high energy density Li-S batteries,in which,the flexible CC substrate with highly porous structure can accommodate large amounts of sulfur and ensure fast electron transfer,while the outer-coated Ti_3 C_2 T_x can serve as a polar and conductive protective layer to further promote the conductivity of the whole electrode,achieve physical blocking and chemical anchoring of lithium-polysulfides as well as catalyze their conversion.Due to these advantages,at a sulfur loading of 4 mg cm^(-2),Li-S cells with Ti_3 C_2 T_x@S/CC cathodes can deliver outstanding cycling stability(746.1 mAh g^(-1) after 200 cycles at1 C),superb rate performance(866.8 mAh g^(-1) up to 2 C) and a high specific energy density(564.2 Wh kg^(-1) after 100 cycles at 0.5 C).More significantly,they also show the commercial potential that can compete with current lithium-ion batteries due to the high areal capacity of 6.7 mAh cm^(-2) at the increased loading of 8 mg cm^(-2).
文摘In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural strength of Al2O3 decreases with increasing specimen height at room temperature, and it tends to stability when height increases to a certain degree (h=5mm in this paper), while the flexural strength of Al2O3 variates unapparently at high temperature with increasing height. There is a critical loading rate R . c. When loading rate R . is less than R . c, the flexural strength of Al2O3 increases with increasing loading rate and it drops sharply when loading rate is higher than R . c. The sensitivity of flexural strength to the loading rate decreases with elevating temperatures.
基金financially supported by the National Key Research and Development Program of China (2019YFB1504503)the National Natural Science Foundation of China (21878030 and 21761162015)
文摘To improve performance of membrane electrode assembly(MEA)at large current density region,efficient mass transfer at the cathode is desired,for which a feasible strategy is to lower catalyst layer thickness by constructing high loading Pt-alloy catalysts on carbon.But the high loading may induce unwanted par-ticle aggregation.In this work,H-PtNi/C with 33%(mass)Pt loading on carbon and monodisperse distri-bution of 3.55 nm PtNi nanoparticles,was prepared by a bimodal-pore route.In electrocatalytic oxygen reduction reaction(ORR),H-PtNi/C displays an activity inferior to the low Pt loading catalyst L-PtNi/C(13.3%(mass))in the half-cell.While in H_(2)-0_(2) MEA,H-PtNi/C delivers the peak power density of 1.51 W·cm^(-2) and the mass transfer limiting current density of 4.4 A·cm^(-2),being 21%and 16%higher than those of L-PtNi/C(1.25 W·cm^(-2),3.8 A·cm^(-2))respectively,which can be ascribed to enhanced mass trans-fer brought by the thinner catalyst layer in the former.In addition,the same method can be used to pre-pare PtFe alloy catalyst with a high-Pt loading of 36%(mass).This work may lead to a range of catalyst materials for the large current density applications,such as fuel cell vehicles.