Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pres...Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.展开更多
This paper introduces a 100 MPa water gas twophase fluid pressurization device.The device can provide 100 MPa gas pressure and 200 MPa liquid pressure for small volume(<20 mL)high-pressure experimental devices.This...This paper introduces a 100 MPa water gas twophase fluid pressurization device.The device can provide 100 MPa gas pressure and 200 MPa liquid pressure for small volume(<20 mL)high-pressure experimental devices.This device can make the pressure control independent of the temperature control without changing the material components of the system.The resolution of this device in adjusting the pressure is±0.2 MPa in the process of boosting and depressurizing.This pressure boosting device generates very little vibration during work and it can be used in experiments with strict requirements on vibration.As a thermodynamic parameter,pressure has a great influence on matter.In the field of experimental geochemistry,pressure is not only an experimental method and an extreme condition but an important physical parameter independent of temperature and chemical composition.展开更多
基金Supported by PetroChina Science and Technology Project(2021DJ0202).
文摘Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.
基金financially supported by the National Key R&D Program of China(2016YFC0600104)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB 18010401)+1 种基金the National Natural Science Foundation of China(41902043)the Science and Technology Foundation Project in Guizhou Province([2019]1316,[2020]1Z032)。
文摘This paper introduces a 100 MPa water gas twophase fluid pressurization device.The device can provide 100 MPa gas pressure and 200 MPa liquid pressure for small volume(<20 mL)high-pressure experimental devices.This device can make the pressure control independent of the temperature control without changing the material components of the system.The resolution of this device in adjusting the pressure is±0.2 MPa in the process of boosting and depressurizing.This pressure boosting device generates very little vibration during work and it can be used in experiments with strict requirements on vibration.As a thermodynamic parameter,pressure has a great influence on matter.In the field of experimental geochemistry,pressure is not only an experimental method and an extreme condition but an important physical parameter independent of temperature and chemical composition.