Hyperthermia effects (39-44 ℃) induced by pulsed high-intensity focused ultrasound (HIFU) have been regarded as a promising therapeutic tool for boosting immune responses or enhancing drug delivery into a solid t...Hyperthermia effects (39-44 ℃) induced by pulsed high-intensity focused ultrasound (HIFU) have been regarded as a promising therapeutic tool for boosting immune responses or enhancing drug delivery into a solid tumor. However, previous studies also reported that the cell death occurs when cells are maintained at 43 ℃ for more than 20 minutes. The aim of this study is to investigate thermal responses inside in vivo rabbit auricular veins exposed to pulsed HIFU (1.17 MHz, 5300 W/cm2, with relatively low-duty ratios (0.2%-4.3%). The results show that: (1) with constant pulse repetition frequency (PRF) (e.g., 1 Hz), the thermal responses inside the vessel will increase with the increasing duty ratio; (2) a temperature elevation to 43 ℃ can be identified at the duty ratio of 4.3%; (3) with constant duty ratios, the change of PRF will not significantly affect the temperature measurement in the vessel; (4) as the duty ratios lower than 4.3%, the presence of microbubbles will not significantly enhance the thermal responses in the vessel, but will facilitate HIFU-induced inertial cavitation events.展开更多
The noninvasive ablation of pancreatic cancer with high intensity focused ultrasound(HIFU) energy is received increasingly widespread interest. With rapidly temperature rise to cytotoxic levels within the focal volume...The noninvasive ablation of pancreatic cancer with high intensity focused ultrasound(HIFU) energy is received increasingly widespread interest. With rapidly temperature rise to cytotoxic levels within the focal volume of ultrasound beams, HIFU can selectively ablate a targeted lesion of the pancreas without any damage to surrounding or overlying tissues. Preliminary studies suggest that this approach is technical safe and feasible, and can be used alone or in combination with systemic chemotherapy for the treatment of patients with locally advanced pancreatic cancer. It can effectively alleviate cancer-related abdominal pain, and may confer an additional survival benefit with few significant complications. This review provides a brief overview of HIFU, describes current clinical applications, summarizes characteristics of continuous and pulsed HIFU, and discusses future applications and challenges in the treatment of pancreatic cancer.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB707900)the National Natural Science Foundation of China (Grant Nos. 11074123, 10974095, 10904068, and 10204014)+2 种基金the Fundamental Research Funds for the Central Universities of China (Grant Nos. 111602040 and 1095020409)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2011812)the Priority Academic Program Development of Jiangsu Higher Educaton Institutions of China
文摘Hyperthermia effects (39-44 ℃) induced by pulsed high-intensity focused ultrasound (HIFU) have been regarded as a promising therapeutic tool for boosting immune responses or enhancing drug delivery into a solid tumor. However, previous studies also reported that the cell death occurs when cells are maintained at 43 ℃ for more than 20 minutes. The aim of this study is to investigate thermal responses inside in vivo rabbit auricular veins exposed to pulsed HIFU (1.17 MHz, 5300 W/cm2, with relatively low-duty ratios (0.2%-4.3%). The results show that: (1) with constant pulse repetition frequency (PRF) (e.g., 1 Hz), the thermal responses inside the vessel will increase with the increasing duty ratio; (2) a temperature elevation to 43 ℃ can be identified at the duty ratio of 4.3%; (3) with constant duty ratios, the change of PRF will not significantly affect the temperature measurement in the vessel; (4) as the duty ratios lower than 4.3%, the presence of microbubbles will not significantly enhance the thermal responses in the vessel, but will facilitate HIFU-induced inertial cavitation events.
文摘The noninvasive ablation of pancreatic cancer with high intensity focused ultrasound(HIFU) energy is received increasingly widespread interest. With rapidly temperature rise to cytotoxic levels within the focal volume of ultrasound beams, HIFU can selectively ablate a targeted lesion of the pancreas without any damage to surrounding or overlying tissues. Preliminary studies suggest that this approach is technical safe and feasible, and can be used alone or in combination with systemic chemotherapy for the treatment of patients with locally advanced pancreatic cancer. It can effectively alleviate cancer-related abdominal pain, and may confer an additional survival benefit with few significant complications. This review provides a brief overview of HIFU, describes current clinical applications, summarizes characteristics of continuous and pulsed HIFU, and discusses future applications and challenges in the treatment of pancreatic cancer.