Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large outpu...Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform.展开更多
Compared with piezoresistive sensors,pressure sensors based on the contact resistance effect are proven to have higher sensitivity and the ability to detect ultra-low pressure,thus attracting extensive research intere...Compared with piezoresistive sensors,pressure sensors based on the contact resistance effect are proven to have higher sensitivity and the ability to detect ultra-low pressure,thus attracting extensive research interest in wearable devices and artificial intelligence systems.However,most studies focus on static or low-frequency pressure detection,and there are few reports on high-frequency dynamic pressure detection.Limited by the viscoelasticity of polymers(necessary materials for traditional vibration sensors),the development of vibration sensors with high frequency response remains a great challenge.Here,we report a graphene aerogel-based vibration sensor with higher sensitivity and wider frequency response range(2 Hz–10 kHz)than both conventional piezoresistive and similar sensors.By modulating the microscopic morphology and mechanical properties,the super-elastic graphene aerogels suitable for vibration sensing have been prepared successfully.Meanwhile,the mechanism of the effect of density on the vibration sensor’s sensitivity is studied in detail.On this basis,the sensitivity,signal fidelity and signal-to-noise ratio of the sensor are further improved by optimizing the structure configuration.The developed sensor exhibits remarkable repeatability,excellent stability,high resolution(0.0039 g)and good linearity(non-linearity error<0.8%)without hysteresis.As demos,the sensor can not only monitor low-frequency physiological signals and motion of the human body,but also respond to the high-frequency vibrations of rotating machines.In addition,the sensor can also detect static pressure.We expect the vibration sensor to meet a wider range of functional needs in wearable devices,smart robots,and industrial equipment.展开更多
基金Supported by National Natural Science Foundation of China.(Grant Nos.51605431,51675472)
文摘Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform.
基金supported by the National Key R&D Program of China(Nos.2018YFA0208402 and 2020YFA0714700)the National Natural Science Foundation of China(Nos.52172060,51820105002,11634014 and 51372269)+1 种基金Prof.X.J.W.thanks Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2020005)One Hundred Talent Project of Institute of Physics,CAS.Prof.H.P.L.and Prof.X.Z.thank support by the“One Hundred talents project”of CAS.
文摘Compared with piezoresistive sensors,pressure sensors based on the contact resistance effect are proven to have higher sensitivity and the ability to detect ultra-low pressure,thus attracting extensive research interest in wearable devices and artificial intelligence systems.However,most studies focus on static or low-frequency pressure detection,and there are few reports on high-frequency dynamic pressure detection.Limited by the viscoelasticity of polymers(necessary materials for traditional vibration sensors),the development of vibration sensors with high frequency response remains a great challenge.Here,we report a graphene aerogel-based vibration sensor with higher sensitivity and wider frequency response range(2 Hz–10 kHz)than both conventional piezoresistive and similar sensors.By modulating the microscopic morphology and mechanical properties,the super-elastic graphene aerogels suitable for vibration sensing have been prepared successfully.Meanwhile,the mechanism of the effect of density on the vibration sensor’s sensitivity is studied in detail.On this basis,the sensitivity,signal fidelity and signal-to-noise ratio of the sensor are further improved by optimizing the structure configuration.The developed sensor exhibits remarkable repeatability,excellent stability,high resolution(0.0039 g)and good linearity(non-linearity error<0.8%)without hysteresis.As demos,the sensor can not only monitor low-frequency physiological signals and motion of the human body,but also respond to the high-frequency vibrations of rotating machines.In addition,the sensor can also detect static pressure.We expect the vibration sensor to meet a wider range of functional needs in wearable devices,smart robots,and industrial equipment.