期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
High Resolution Acoustic Microscopy with Low Frequency and Its Applications in Analysis of Ferroelectrics
1
作者 Q.R.Yin 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第S1期17-17,共1页
关键词 high resolution Acoustic Microscopy with Low frequency and Its Applications in Analysis of Ferroelectrics
下载PDF
High Spatial Resolution and High Temporal Frequency(30-m/15-day) Fractional Vegetation Cover Estimation over China Using Multiple Remote Sensing Datasets:Method Development and Validation 被引量:3
2
作者 Xihan MU Tian ZHAO +8 位作者 Gaiyan RUAN Jinling SONG Jindi WANG Guangjian YAN Tim RMCVICAR Kai YAN Zhan GAO Yaokai LIU Yuanyuan WANG 《Journal of Meteorological Research》 SCIE CSCD 2021年第1期128-147,共20页
High spatial resolution and high temporal frequency fractional vegetation cover(FVC) products have been increasingly in demand to monitor and research land surface processes. This paper develops an algorithm to estima... High spatial resolution and high temporal frequency fractional vegetation cover(FVC) products have been increasingly in demand to monitor and research land surface processes. This paper develops an algorithm to estimate FVC at a 30-m/15-day resolution over China by taking advantage of the spatial and temporal information from different types of sensors: the 30-m resolution sensor on the Chinese environment satellite(HJ-1) and the 1-km Moderate Resolution Imaging Spectroradiometer(MODIS). The algorithm was implemented for each main vegetation class and each land cover type over China. First, the high spatial resolution and high temporal frequency normalized difference vegetation index(NDVI) was acquired by using the continuous correction(CC) data assimilation method. Then, FVC was generated with a nonlinear pixel unmixing model. Model coefficients were obtained by statistical analysis of the MODIS NDVI. The proposed method was evaluated based on in situ FVC measurements and a global FVC product(GEOV1 FVC). Direct validation using in situ measurements at 97 sampling plots per half month in 2010 showed that the annual mean errors(MEs) of forest, cropland, and grassland were-0.025, 0.133, and 0.160, respectively, indicating that the FVCs derived from the proposed algorithm were consistent with ground measurements [R2 = 0.809,root-mean-square deviation(RMSD) = 0.065]. An intercomparison between the proposed FVC and GEOV1 FVC demonstrated that the two products had good spatial–temporal consistency and similar magnitude(RMSD approximates 0.1). Overall, the approach provides a new operational way to estimate high spatial resolution and high temporal frequency FVC from multiple remote sensing datasets. 展开更多
关键词 fractional vegetation cover(FVC) high spatial resolution and high temporal frequency data fusion normalized difference vegetation index(NDVI) pixel unmixing model multiple remote sensing datasets
原文传递
Seismic description and fluid identification of thin reservoirs in Shengli Chengdao extra-shallow sea oilfield
3
作者 SHU Ningkai SU Chaoguang +5 位作者 SHI Xiaoguang LI Zhiping ZHANG Xuefang CHEN Xianhong ZHU Jianbing SONG Liang 《Petroleum Exploration and Development》 CSCD 2021年第4期889-899,共11页
The meandering channel deposit of the upper member of Neogene Guantao Formation in Shengli Chengdao extra-shallow sea oilfield is characterized by rapid change in sedimentary facies.In addition,affected by surface tid... The meandering channel deposit of the upper member of Neogene Guantao Formation in Shengli Chengdao extra-shallow sea oilfield is characterized by rapid change in sedimentary facies.In addition,affected by surface tides and sea water reverberation,the double sensor seismic data processed by conventional methods has low signal-to-noise ratio and low resolution,and thus cannot meet the needs of seismic description and oil-bearing fluid identification of thin reservoirs less than 10 meters thick in this area.The two-step high resolution frequency bandwidth expanding processing technology was used to improve the signal-to-noise ratio and resolution of the seismic data,as a result,the dominant frequency of the seismic data was enhanced from 30 Hz to 50 Hz,and the sand body thickness resolution was enhanced from 10 m to 6 m.On the basis of fine layer control by seismic data,three types of seismic facies models,floodplain,natural levee and point bar,were defined,and the intelligent horizon-facies controlled recognition technology was worked out,which had a prediction error of reservoir thickness of less than 1.5 m.Clearly,the description accuracy of meandering channel sand bodies has been improved.The probability semi-quantitative oiliness identification method of fluid by prestack multi-parameters has been worked out by integrating Poisson’s ratio,fluid factor,product of Lame parameter and density,and other prestack elastic parameters,and the method has a coincidence rate of fluid identification of more than 90%,providing solid technical support for the exploration and development of thin reservoirs in Shengli Chengdao extra-shallow sea oilfield,which is expected to provide reference for the exploration and development of similar oilfields in China. 展开更多
关键词 Jiyang Depression Chengdao Oilfield extra-shallow sea NEOGENE Sea and land dual-sensor prestack two-step high resolution frequency bandwidth expanding processing intelligent horizon-facies controlled recognition technology prestack seismic fluid identification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部