Stability level of tunnels that exist in an underground mine has a great influence on the safety,production and economic performance of mines.Ensuring of stability for soft-rock tunnels is an important task for deep c...Stability level of tunnels that exist in an underground mine has a great influence on the safety,production and economic performance of mines.Ensuring of stability for soft-rock tunnels is an important task for deep coal mines located in high in situ stress conditions.Using the available information on stratigraphy,geological structures,in situ stress measurements and geo-mechanical properties of intact rock and discontinuity interfaces,a three-dimensional numerical model was built by using 3DEC software to simulate the stress conditions around a tunnel located under high in situ stress conditions in a coal rock mass in China.Analyses were conducted for several tunnel shapes and rock support patterns.Results obtained for the distribution of failure zones,and stress and displacement felds around the tunnel were compared to select the best tunnel shape and support pattern to achieve the optimum stability conditions.展开更多
Squeezing ground conditions,which can lead to severe loads in tunnels,have historically been associated with the presence of clay minerals in the ground.Over the years,many methodologies have been proposed to predict ...Squeezing ground conditions,which can lead to severe loads in tunnels,have historically been associated with the presence of clay minerals in the ground.Over the years,many methodologies have been proposed to predict squeezing in tunnels based on tunnel depth,in situ stress,ground mineralogy,and ground strength and deformation behavior.This paper presents a comprehensive review of methodologies to predict tunnel squeezing in clay-rich rocks.A new methodology is proposed where ground conditions and squeezing potential are assessed based on the Stress History and Normalized Soil Engineering Properties(SHANSEP)approach adapted to clayrich rocks,Peck’s stability number and Hoek&Brown’s(1997)Geological Strength Index(GSI).A squeezing number S is suggested to classify ground conditions based on the level of squeezing that the ground may experience in response to tunneling.Finally,it is demonstrated that by combining the proposed classification system and an existing classification system for ground squeezing condition,an accurate estimate of tunnel strain can also be obtained.The proposed method is applied to four case studies of tunnels in squeezing ground in shale and mudstone.展开更多
文摘Stability level of tunnels that exist in an underground mine has a great influence on the safety,production and economic performance of mines.Ensuring of stability for soft-rock tunnels is an important task for deep coal mines located in high in situ stress conditions.Using the available information on stratigraphy,geological structures,in situ stress measurements and geo-mechanical properties of intact rock and discontinuity interfaces,a three-dimensional numerical model was built by using 3DEC software to simulate the stress conditions around a tunnel located under high in situ stress conditions in a coal rock mass in China.Analyses were conducted for several tunnel shapes and rock support patterns.Results obtained for the distribution of failure zones,and stress and displacement felds around the tunnel were compared to select the best tunnel shape and support pattern to achieve the optimum stability conditions.
基金the University Transportation Center for Underground Transportation Infrastructure(UTC-UTI)at the Colorado School of Mines for funding this research under Grant No.69A3551747118 from the U.S.Department of Transportation(DOT).
文摘Squeezing ground conditions,which can lead to severe loads in tunnels,have historically been associated with the presence of clay minerals in the ground.Over the years,many methodologies have been proposed to predict squeezing in tunnels based on tunnel depth,in situ stress,ground mineralogy,and ground strength and deformation behavior.This paper presents a comprehensive review of methodologies to predict tunnel squeezing in clay-rich rocks.A new methodology is proposed where ground conditions and squeezing potential are assessed based on the Stress History and Normalized Soil Engineering Properties(SHANSEP)approach adapted to clayrich rocks,Peck’s stability number and Hoek&Brown’s(1997)Geological Strength Index(GSI).A squeezing number S is suggested to classify ground conditions based on the level of squeezing that the ground may experience in response to tunneling.Finally,it is demonstrated that by combining the proposed classification system and an existing classification system for ground squeezing condition,an accurate estimate of tunnel strain can also be obtained.The proposed method is applied to four case studies of tunnels in squeezing ground in shale and mudstone.