期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
LARGE AERODYNAMIC FORCES ON A SWEEPING WING AT LOW REYNOLDS NUMBER 被引量:6
1
作者 孙茂 吴江浩 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第1期24-31,共8页
The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically.After an initial start from rest,the wing is made to execute an azimuthal rotation(sweepin... The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically.After an initial start from rest,the wing is made to execute an azimuthal rotation(sweeping)at a large angle of attack and constant angular velocity.The Reynolds number(Re)considered in the present note is 480(Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root).During the constant-speed sweeping motion,the stall is absent and large and approximately constant lift and drag coefficients can be maintained.The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows.Soon after the initial start,a vortex ring,which consists of the leading-edge vortex(LEV),the starting vortex,and the two wing-tip vortices,is formed in the wake of the wing.During the subsequent motion of the wing,a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength.This prevents the LEV from shedding.As a result, the size of the vortex ring increases approximately linearly with time,resulting in an approximately constant time rate of the first moment of vorticity,or approximately constant lift and drag coefficients. The variation of the relative velocity along the wing span causes a pressure gradient along the wing- span.The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force. 展开更多
关键词 model insect wing sweeping motion high lift leading-edge-vortex
下载PDF
Investigation of micro vortex generators on controlling flow separation over SCCH high-lift configuration 被引量:4
2
作者 CHU HuBing ZHANG BinQian +2 位作者 CHEN YingChun LI YaLin MAO Jun 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第7期1943-1953,共11页
For the problem that the flow separation on the flap lowers the aerodynamic performance of high lift system,an investigation was carried out on using micro vortex generators(VGs) to control the separation on flap of t... For the problem that the flow separation on the flap lowers the aerodynamic performance of high lift system,an investigation was carried out on using micro vortex generators(VGs) to control the separation on flap of the swept constant chord half-model(SCCH) high-lift configuration,at a small to medium angle of attack,by experimental and numerical methods.The basic flow characteristics of SCCH landing configuration were analyzed by using numerical method to provide required information for the design of micro VGs.Then,by keeping the cruise configuration intact,the preliminary design procedure and design methods of micro VGs were established.In addition,the micro VGs were designed.The effects of VG's arrangement and geometric parameters,such as the arrangement mode,chordwise position,arrangement angle,height and spanwise distance,on controlling efficiency were investigated by using numerical method.Then the parameters of preliminary VGs were adjusted as the basis configuration for wind tunnel test.The experiments were accomplished in NH-2 wind tunnel for validating the numerical method,as well as obtaining the design principles and methods of micro VGs.The parameters of VGs were also optimized based on the experiments.The experimental results showed that the numerical design method can serve as an efficient and accurate design tool.The lift and drag were increased by 10% and 14%,respectively in landing state,which satisfied the requirements for landing.Finally,it was concluded that the established design principles and methods for micro VGs in this investigation can be used in engineering application. 展开更多
关键词 micro vortex generators high lift system flow control numerical simulation wind tunnel test
原文传递
Passive Control of Laminar Separation Bubble with Spanwise Groove on a Low-speed Highly Loaded Low-pressure Turbine Blade 被引量:1
3
作者 Hualing Luo Weiyang Qiao Kaifu XuCollege of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第3期193-201,共9页
LES (Large-Eddy Simulation) computations were preformed to investigate the mechanisms of a kind of spanwisegroove for the passive control of laminar separation bubble on the suction surface of a low-speed highly loade... LES (Large-Eddy Simulation) computations were preformed to investigate the mechanisms of a kind of spanwisegroove for the passive control of laminar separation bubble on the suction surface of a low-speed highly loadedlow-pressure turbine blade at Re = 50,000 (Reynolds number, based on inlet velocity and axial chord length).Compared with the smooth suction surface, the numerical results indicate that: (1) the groove is effective toshorten and thin the separation bubble, which contributes the flow loss reduction on the groove surface, by thinningthe boundary layer behind the groove and promoting earlier transition inception in the separation bubble; (2)upstream movement of the transition inception location on the grooved surface is suggested being the result of thelower frequency at which the highest amplification rate of instability waves occurs, and the larger initial amplitudeof the disturbance at the most unstable frequency before transition; and (3) the viscous instability mode ispromoted on the grooved surface, due to the thinning of the boundary layer behind the groove. 展开更多
关键词 larger-eddy simulation laminar separation bubble transition passive control spanwise groove high lift low-pressure turbine
原文传递
Turbine Blade Boundary Layer Separation Suppression via Synthetic Jet: an Experimental and Numerical Study 被引量:1
4
作者 Bernardini C. +9 位作者 Carnevale M. Manna M. Martelli F. Simoni D. Zunino P. 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第5期404-412,共9页
The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging t... The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers. 展开更多
关键词 Synthetic Jet Separated Flow Active Flow Control Unsteady Flow Ultra high Lift LPT.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部