期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
A multi-functional binder for high loading sulfur cathode 被引量:5
1
作者 Ying Chu Ning Chen +3 位作者 Ximing Cui Anmin Liu Liang Zhen Qinmin Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期99-104,I0004,共7页
Lithium sulfur(Li-S)batteries are the promising power sources,but their commercialization is significantly impeded by poor energy-storage functions at high sulfur loading.Here we report that such an issue can be effec... Lithium sulfur(Li-S)batteries are the promising power sources,but their commercialization is significantly impeded by poor energy-storage functions at high sulfur loading.Here we report that such an issue can be effectively addressed by using a mussel-inspired binder comprised of chitosan grafted with catecholic moiety for sulfur cathodes.The resulting sulfur cathodes possess a high loading up to 12.2 mg cm-2 but also exhibit one of the best electrochemical properties among their counterparts.The excellent performances are attributed to the strong adhesion of the binder to sulfur particles,conducting agent,current collector,and polysulfide.The versatile adhesion effectively increases the sulfur loading,depresses the shuttle effect,and alleviates mechanical pulverization during cycling processes.The present investigation offers a new insight into high performance sulfur cathodes through a bio-adhesion viewpoint. 展开更多
关键词 Li-S batteries Sulfur cathode Mussel-inspired binder Bio-adhesion high loading high performance
下载PDF
Controllable synthesis of high loading LiFePO_4/C nanocomposites using bimodal mesoporous carbon as support for high power Li-ion battery cathodes 被引量:2
2
作者 Fei Cheng Duo Li +1 位作者 Anhui Lu Wencui Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第6期907-913,共7页
Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of ... Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g-1at 0.1 C of the high loading electrode and 42 mAh·g-1at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion. 展开更多
关键词 LIFEPO4 high loading fast ion diffusion high rate performance lithium-ion batteries
下载PDF
Oxygen vacancies with localized electrons direct a functionalized separator toward dendrite-free and high loading LiFePO_(4)for lithium metal batteries
3
作者 Qi An Qing Liu +6 位作者 Shimin Wang Lixiang Liu Han Wang Yongjiang Sun Lingyan Duan Genfu Zhao Hong Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期38-45,I0002,共9页
The pursuit of high energy density has promoted the development of high-performance lithium metal batteries(LMBs).However,the underestimated but non-negligible dendrites of Li anode have been observed to shorten batte... The pursuit of high energy density has promoted the development of high-performance lithium metal batteries(LMBs).However,the underestimated but non-negligible dendrites of Li anode have been observed to shorten battery lifespan.Herein,a composite separator(TiO_(2-x)@PP),in which TiO_(2)with electron-localized oxygen vacancies(TiO_(2-x))is coated on a commercial PP separator,is fabricated to homogenize lithium ion transport and stabilize the lithium anode interface.With the utilization of TiO_(2-x)@PP separators,the symmetric lithium metal battery displays enhanced cycle stability over 800 h under a high current density of 8 m A cm^(-2).Moreover,the LMBs assembled with high-loading LiFePO_(4)(9.24 mg cm^(-2))deliver a stable cycling performance over 900 cycles at a rate of 0.5 C.Comprehensive theoretical studies based on density functional theory(DFT)further unveil the mechanism.The favorable TiO_(2-x)is beneficial for facilitating fast Li+migration and impeding anions transfer.In addressing the Li dendrite issues,the use of TiO_(2-x)@PP separator potentially provides a facile and attractive strategy for designing well-performing LMBs,which are expected to meet the application requirements of rechargeable batteries. 展开更多
关键词 Oxygen vacancy Ionic transport regulation Dendrite-free Localized electrons high loading
下载PDF
A strategy to achieve high loading and high energy density Li-S batteries 被引量:4
4
作者 Fei Yin Qi Jin +2 位作者 Hong Gao XiTian Zhang ZhiGuo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期340-346,I0012,共8页
Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3... Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3 D free-standing sulfur cathode scaffold is rationally designed and fabricated by coaxially coating polar Ti_3 C_2 T_x flakes on sulfur-impregnated carbon cloth(Ti_3 C_2 T_x@S/CC) to achieve high loading and high energy density Li-S batteries,in which,the flexible CC substrate with highly porous structure can accommodate large amounts of sulfur and ensure fast electron transfer,while the outer-coated Ti_3 C_2 T_x can serve as a polar and conductive protective layer to further promote the conductivity of the whole electrode,achieve physical blocking and chemical anchoring of lithium-polysulfides as well as catalyze their conversion.Due to these advantages,at a sulfur loading of 4 mg cm^(-2),Li-S cells with Ti_3 C_2 T_x@S/CC cathodes can deliver outstanding cycling stability(746.1 mAh g^(-1) after 200 cycles at1 C),superb rate performance(866.8 mAh g^(-1) up to 2 C) and a high specific energy density(564.2 Wh kg^(-1) after 100 cycles at 0.5 C).More significantly,they also show the commercial potential that can compete with current lithium-ion batteries due to the high areal capacity of 6.7 mAh cm^(-2) at the increased loading of 8 mg cm^(-2). 展开更多
关键词 Lithium-sulfur batteries high energy density Ti_(3)C_(2)T_(x) high sulfur loading 3D free-standing sulfur cathode
下载PDF
High Fe‑Loading Single‑Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy
5
作者 Si Chen Fang Huang +5 位作者 Lijie Mao Zhimin Zhang Han Lin Qixin Yan Xiangyu Lu Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期187-203,共17页
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ... The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections. 展开更多
关键词 Nanocatalytic medicine Single-atom catalysts Reactive oxygen species(ROS) high metal loading Oxidase catalysis
下载PDF
Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction 被引量:4
6
作者 Yan Jiang Xin Zhang +5 位作者 Xiaoping Dai Wen Zhang Qiang Sheng Hongying Zhuo Yun Xiao Hai Wang 《Nano Research》 SCIE EI CAS CSCD 2017年第3期876-889,共14页
Controlled integration of ultrafine metal nanoparticles (MNPs) and metal- organic frameworks (MOFs) has drawn much attention due to their unique physical and chemical properties. However, the development of a one-... Controlled integration of ultrafine metal nanoparticles (MNPs) and metal- organic frameworks (MOFs) has drawn much attention due to their unique physical and chemical properties. However, the development of a one-step strategy for preparing ultrafine MNPs within MOFs still remains a great challenge. Herein, a facile synthetic approach toward the abovementioned composites was developed. In contrast to the conventional approach, these hybrids were prepared by the direct mixing of metal and MOF precursors in the reaction solution assisted by microwave irradiation. Impressively, the Au/MOF-199 composite with uniformly distributed ultrafine Au nanoparticles could be fabricated in only two minutes, and the Au loading could be increased up to a level of 5.13%. The multifunctional Au/MOF-199 catalysts exhibited high turnover numbers (TONs) and turnover frequencies (TOFs) in the three-component coupling reaction of formaldehyde, phenylacetylene, and piperidine (AB-coupling). Owing to the confinement effect of MOF-199, the 5.13%Au/MOF-199 catalyst could be recycled for five runs without serious loss of activity, with no obvious aggregation of Au NPs detected. 展开更多
关键词 MOF-199 ultrafine Au nanoparticles(NPs) high loading microwave irradiation AS-coupling
原文传递
High loading Pt nanoparticles on ordered mesoporous carbon sphere arrays for highly active methanol electro-oxidation 被引量:3
7
作者 Cheng-Wei Zhang Lian-Bin Xu Jian-Feng Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第6期832-836,共5页
Three-dimensionally(3D) ordered mesoporous carbon sphere arrays(OMCS) are explored to support high loading(60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction(MOR).The OMCS has a u... Three-dimensionally(3D) ordered mesoporous carbon sphere arrays(OMCS) are explored to support high loading(60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction(MOR).The OMCS has a unique hierarchical nanostructure with ordered large mesopores and macropores that can facilitate high dispersion of the Pt nanoparticles and fast mass transport during the reactions. The prepared Pt/OMCS exhibits uniformly dispersed Pt nanoparticles with an average size of- 2.0 nm on the mesoporous walls of the carbon spheres. The Pt/OMCS catalyst shows significantly enhanced specific electrochemically active surface area(ECSA)(73.5 m^2g^-1) and electrocatalytic activity(0.69 mA cm^-2)for the MOR compared with the commercial 60 wt% Pt/C catalyst. 展开更多
关键词 CARBON Pt nanoparticles high loading ELECTROCATALYST Methanol oxidation reaction Fuel cell
原文传递
Long-lasting,reinforced electrical networking in a high-loading Li_(2)S cathode for high-performance lithium–sulfur batteries 被引量:3
8
作者 Hun Kim Kyeong-Jun Min +4 位作者 Sangin Bang Jang-Yeon Hwang Jung Ho Kim Chong SYoon Yang-Kook Sun 《Carbon Energy》 SCIE CSCD 2023年第8期1-14,共14页
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein... Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles. 展开更多
关键词 carbon nanotubes electrical network high energy high loading Li_(2)S cathode lithium-sulfur batteries
下载PDF
Liquid metal welding enabling high loading binder/carbon-free layered oxide cathode toward high-performance liquid and solid-state battery 被引量:1
9
作者 Xiang Han Lan-Hui Gu +2 位作者 Min Xu Min-Feng Chen Ji-Zhang Chen 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1583-1593,共11页
High loading cathode with high active material proportion is a practical demand but far below the desirable value to achieve high energy density lithium-ion batteries(LIBs).Normally,the Li^(+)/electron transport betwe... High loading cathode with high active material proportion is a practical demand but far below the desirable value to achieve high energy density lithium-ion batteries(LIBs).Normally,the Li^(+)/electron transport between active materials and electrolyte/c arbon,however,it is poor and areal resistance is extremely high for a high loading/thick cathode.In this manuscript,taking high-voltage lithium cobalt oxide LiCoO_(2)(LCO)as an example,we design a facile liquid metal welding method enabled by a low melting-point indium-tin oxide In_(2)O_(3)/SnO_(2)(ITO)during a thermal treatment process,the strongly adhesion active particles show robust mechanical property for the free-standing LCO cathode with a pellet architecture.We also demonstrate that the O_(2)atmosphere plays a critical role on the interfacial property,that is preventing the layered structure to rock-salt Co_(3)O_(4)as well as further enhancing the interfacial mechanical integration.As expected,the LCO-ITO free-standing cathode not only shows robust mechanical property with densely packed configuration but also provides a fast Li^(+)/electron pathway at the interface.Consequently,the LCO-ITO composite cathode exhibits excellent electrochemical cycling performance in both liquid and solid-state cells.For example,even at a high active material mass of 56 mg·cm^(-2),the LCO cathode still delivers a specific capacity of 151 mAh·g^(-1)and maintains132.5 mAh·g^(-1)(corresponding to 7.4 mAh·cm^(-2))after 80cycles.The LCO-ITO-O_(2)cathode is also applicable to a solidstate cell,which exhibits a high capacity of 100.4 mAh·g^(-1)after 200 cycles of long-term cycling.The excellent electrochemical of the LCO-ITO-O_(2)reveals the successful engineering mechanical architecture and interfacial carriers transport,which may be expected as an alternative approach to achieve high energy density LIBs. 展开更多
关键词 Lithium-ion battery(LIB) high loading cathode Liquid metal welding Mechanical property Interfacial carriers transport
原文传递
Defect engineering of high-loading single-atom catalysts for electrochemical carbon dioxide reduction 被引量:1
10
作者 Yang Li Zhenjiang He +3 位作者 Feixiang Wu Shuangyin Wang Yi Cheng Sanping Jiang 《Materials Reports(Energy)》 2023年第2期124-141,I0003,共19页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor select... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed. 展开更多
关键词 Single-atom catalysts high loading ELECTROCATALYSIS Carbon dioxide reduction(CO_(2)RR) Transition metals
下载PDF
High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries 被引量:8
11
作者 Heng Mao Limin Liu +11 位作者 Lei Shi HuWu Jinxin Lang Ke Wang Tianxiang Zhu Yiyang Gao Zehui Sun Jing Zhao Guoxin Gao Dongyang Zhang Wei Yan Shujiang Ding 《Science Bulletin》 SCIE EI CAS CSCD 2020年第10期803-811,M0003,共10页
Lithium-sulfur(Li-S) batteries have attracted considerable attention due to their high energy density(2600 Wh kg-1). However, its commercialization is hindered seriously by the low loading and utilization rate of sulf... Lithium-sulfur(Li-S) batteries have attracted considerable attention due to their high energy density(2600 Wh kg-1). However, its commercialization is hindered seriously by the low loading and utilization rate of sulfur cathodes. Herein, we designed the cellulose-based graphene carbon composite aerogel(CCA) self-standing electrode to enhance the performance of Li-S batteries. The CCA contributes to the mass loading and utilization efficiency of sulfur, because of its unique physical structure: low density(0.018 g cm-3), large specific surface area(657.85 m2 g-1), high porosity(96%), and remarkable electrolyte adsorption(42.25 times). Compared to Al(about 49%), the CCA displayed excellent sulfur use efficiency(86%) and could reach to high area capacity of 8.60 mAh cm-2 with 9.11 mgS loading. Meanwhile,the CCA exhibits the excellent potential for pulse sensing applications due to its flexibility and superior sensitivity to electrical response signals. 展开更多
关键词 Cellulose-based graphene aerogel Self-standing electrode high sulfur loading Lithium-sulfur battery Pulse sensing
原文传递
Towards full demonstration of high areal loading sulfur cathode in lithium–sulfur batteries 被引量:15
12
作者 Long Kong Qi Jin +5 位作者 Xi-Tian Zhang Bo-Quan Li Jin-Xiu Chen Wan-Cheng Zhu Jia-Qi Huang Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期17-22,共6页
Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainabi... Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur areal loading is vital for the practical applications of Li–S batteries with very high energy density.However,the high sulfur loading in an electrode results in poor rate and cycling performances of batteries in most cases.Herein,we used diameters of 5.0(D5)and 13.0(D13)mm to probe the effect of electrodes with different sizes on the rate and cycling performances under a high sulfur loading(4.5 mg cm^-2).The cell with D5 sulfur cathode exhibits better rate and cycling performances comparing with a large(D13)cathode.Both the high concentration of lithium polysulfides and corrosion of lithium metal anode impede rapid kinetics of sulfur redox reactions,which results in inferior battery performance of the Li–S cell with large diameter cathode.This work highlights the importance of rational matching of the large sulfur cathode with a high areal sulfur loading,carbon modified separators,organic electrolyte,and Li metal anode in a pouch cell,wherein the sulfur redox kinetics and lithium metal protection should be carefully considered under the flooded lithium polysulfide conditions in a working Li–S battery. 展开更多
关键词 Lithium sulfur batteries high areal sulfur loading Lithium anode protection Sulfur redox reactions Polysulfide interm ediates
下载PDF
Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets 被引量:8
13
作者 Shouzheng Zhang Ning Zhong +5 位作者 Xing Zhou Mingjie Zhang Xiangping Huang Xuelin Yang Ruijin Meng Xiao Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期70-82,共13页
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architec... The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation.A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase(Ti3C2Tx nanosheets) is performed,aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading.The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktej en black,not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host,but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode.The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness,which accounts a little contribution to the thick sulfur electrode;thus,the impacts on the energy density is minimal.By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator,a stable Li-S battery with high sulfur areal loading(5.6 mg cm-2) and high areal capacity(6.4 mAh cm-2) at relatively lean electrolyte is achieved. 展开更多
关键词 MXene nanosheet high sulfur areal loading INTERLAYER Lithium–sulfur battery
下载PDF
Effect of microvoids on microplasticity behavior of dual-phase titanium alloy under high cyclic loading(Ⅰ):Crystal plasticity analysis 被引量:4
14
作者 Kai-di LI Xiao-ning HAN +2 位作者 Bin TANG Meng-qi ZHANG Jin-shan LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期513-523,共11页
A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium a... A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium alloy under high cyclic loading.Results show that geometrically necessary dislocations(GND)tend to accumulate around the microvoids,leading to an increment of average GND density.The influence of curvature in the tip plastic zone(TPZ)on GND density is greater than that of the size of the microvoid.As the curvature in TPZ and the size of the microvoid increase,the cumulative shear strain(CSS)in the primaryα,secondaryα,andβphases increases.Shear deformation in the prismatic slip system is dominant in the primaryαphase.As the distance between the microvoids increases,the interactive influence of the microvoids on the cumulative shear strain decreases. 展开更多
关键词 crystal plasticity dual-phase Ti alloy MICROVOIDS high cyclic loading cumulative shear strain geometrically necessary dislocation
下载PDF
High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance 被引量:2
15
作者 Wei Hong Xinran Shen +4 位作者 Jian Wang Xin Feng Wenjing Zhang Jing Li Zidong Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期30-35,共6页
To improve performance of membrane electrode assembly(MEA)at large current density region,efficient mass transfer at the cathode is desired,for which a feasible strategy is to lower catalyst layer thickness by constru... To improve performance of membrane electrode assembly(MEA)at large current density region,efficient mass transfer at the cathode is desired,for which a feasible strategy is to lower catalyst layer thickness by constructing high loading Pt-alloy catalysts on carbon.But the high loading may induce unwanted par-ticle aggregation.In this work,H-PtNi/C with 33%(mass)Pt loading on carbon and monodisperse distri-bution of 3.55 nm PtNi nanoparticles,was prepared by a bimodal-pore route.In electrocatalytic oxygen reduction reaction(ORR),H-PtNi/C displays an activity inferior to the low Pt loading catalyst L-PtNi/C(13.3%(mass))in the half-cell.While in H_(2)-0_(2) MEA,H-PtNi/C delivers the peak power density of 1.51 W·cm^(-2) and the mass transfer limiting current density of 4.4 A·cm^(-2),being 21%and 16%higher than those of L-PtNi/C(1.25 W·cm^(-2),3.8 A·cm^(-2))respectively,which can be ascribed to enhanced mass trans-fer brought by the thinner catalyst layer in the former.In addition,the same method can be used to pre-pare PtFe alloy catalyst with a high-Pt loading of 36%(mass).This work may lead to a range of catalyst materials for the large current density applications,such as fuel cell vehicles. 展开更多
关键词 high Pt loading catalyst Pt alloy Polymer electrolyte membrane fuel cells Oxygen reduction reaction
下载PDF
High drug loading hydrophobic cross-linked dextran microspheres as novel drug delivery systems for the treatment of osteoarthritis 被引量:1
16
作者 Zhimin Li Xianjing Feng +8 位作者 Shixing Luo Yanfeng Ding Zhi Zhang Yifeng Shang Doudou Lei Jinhong Cai Jinmin Zhao Li Zheng Ming Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第4期109-123,共15页
Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modi... Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modified cross-linked dextran(Sephadex,S0)was fabricated by respectively grafting with linear alkyl chains,branched alkyl chains or aromatic chain,and acted as DDSs after ibuprofen(Ibu)loading for OA therapy.This DDSs expressed sustained drug release,excellent anti-inflammatory and chondroprotective effects both in IL-1βinduced chondrocytes and OA joints.Specifically,the introduction of a longer hydrophobic chain,particularly an aromatic chain,distinctly improved the hydrophobicity of S0,increased Ibu loading efficiency,and further led to significantly improving OA therapeutic effects.Therefore,hydrophobic microspheres with greatly improved drug loading ratio and prolonged degradation rates show great potential to act as DDSs for OA therapy. 展开更多
关键词 Sephadex microsphere Hydrophobic modification Drug delivery system high drug loading ratio OSTEOARTHRITIS
下载PDF
Construction of strong built-in electric field in binary metal sulfide heterojunction to propel high-loading lithium-sulfur batteries 被引量:1
17
作者 Weiming Xiong Jiande Lin +6 位作者 Huiqun Wang Sha Li Junhao Wang Yuxiang Mao Xiao Zhan De-Yin Wu Li Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期492-501,I0011,共11页
The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior ele... The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior electronic conductivity and high electrocatalytic activity,e.g.,heterostructures,is a promising strategy to solve the above obstacles.Herein,a binary metal sulfide MnS-MoS_(2) heterojunction electrocatalyst is first designed for the construction of high-sulfur-loaded and durable Li-S batteries.The MnS-MoS_(2) p-n heterojunction shows a unique structure of MoS_(2) nanosheets decorated with ample MnS nanodots,which contributes to the formation of a strong built-in electric field at the two-phase interface.The MnS-MoS_(2) hybrid host shows strong soluble polysulfide affinity,enhanced electronic conductivity,and exceptional catalytic effect on sulfur reduction.Benefiting from the synergistic effect,the as-derived S/MnS-MoS_(2) cathode delivers a superb rate capability(643 m A h g^(-1)at 6 C)and a durable cyclability(0.048%decay per cycle over 1000 cycles).More impressively,an areal capacity of 9.9 m A h cm^(-2)can be achieved even under an extremely high sulfur loading of 14.7 mg cm^(-2)and a low electrolyte to sulfur ratio of 2.9μL mg^(-1).This work provides an in-depth understanding of the interfacial catalytic effect of binary metal compound heterojunctions on sulfur reaction kinetics. 展开更多
关键词 Lithium-sulfur battery MnS-MoS_(2)heterojunction Built-in electric field Sulfur reaction kinetics high sulfur loading
下载PDF
Hot Spot in Materials with Structural Defects under High Shear Loading Rates 被引量:1
18
作者 S. G.Psakhie K.P.Zolnikov and D. Yu.Saraev (Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Siberian Branch,Akademicheskii pr.2/1, 634021 Tomsk, Russia) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第1期72-74,共3页
The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopo... The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopotential theory Solitary waves were generated in the sample under mechanical loading. Their interaction with the vacancy complexes was shown to be able to initiate hot spot in that local region of the complexes. Some parameters of the hot spot as well as solitary waves were calculated. The initiation of the hot spot is accompanied with sufficient local structural relaxation. 展开更多
关键词 REV Hot Spot in Materials with Structural Defects under high Shear loading Rates
下载PDF
A fast approach to optimize dye loading of photoanode via ultrasonic technique for highly efficient dye-sensitized solar cells 被引量:1
19
作者 Jue Chen Xing Li +1 位作者 Wenjun Wu Jianli Hua 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期750-755,共6页
A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at ... A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at random and single molecular state in the ultrasonic field and the ultrasonic wave favors the diffusion and adsorption processes of dye molecules. As a result, the introduction of ultrasonic technique at room temperature leads to faster and more well-distributed dye adsorption on TiO2 as well as higher cell efficiency than regular deposition, thus the fabrication time is markedly reduced. It is found that the device based on 40 kHz ultrasonic (within 1 h) with N719 exhibits a Voc of 789 mV, Jsc of 14.94 mA]cm2 and fill factor (FF) of 69.3, yielding power conversion efficiency (PCE) of 8.16%, which is higher than device regularly dyed for 12 h (PCE = 8.06%). In addition, the DSSC devices obtain the best efficiency (PCE = 8.68%) when the ultrasonic deposition time increases to 2.5 h. The DSSCs fabricated via ultrasonic technique presents more dye loading, larger photocurrent, less charge recombination and higher photovoltage. The charge extraction and electron impedance spectroscopy (EIS) were performed to understand the influence of ultrasonic technique on the electron recombination and performance of DSSCs. 展开更多
关键词 Ultrasonic technique Fast dye loading Photoanode high efficiency DSSC
下载PDF
Tailoring the electronic conductivity of high-loading cathode electrodes for practical sulfide-based all-solid-state batteries 被引量:1
20
作者 Huaqing Shen Shenghao Jing +6 位作者 Siliang Liu Yuting Huang Fangbo He Yang Liu Zhi Zhuang Zongliang Zhang Fangyang Liu 《Advanced Powder Materials》 2023年第4期63-72,共10页
Sulfide-based all-solid-state batteries(ASSBs)exhibit unparalleled application value due to the high ionic conductivity and good processability of sulfide solid electrolytes(SSEs).Carbon-based conductive agents(CAs)are ... Sulfide-based all-solid-state batteries(ASSBs)exhibit unparalleled application value due to the high ionic conductivity and good processability of sulfide solid electrolytes(SSEs).Carbon-based conductive agents(CAs)are often used in the construction of electronic conductive networks to achieve rapid electron transfer.However,CAs accelerate the formation of decomposition products of SSEs,and their effects on sulfide-based ASSBs are not fully understood.Herein,the effect of CAs(super P,vaper-grown carbonfibers,and carbon nanotubes)on the performance of sulfide-based ASSBs is investigated under different cathode active materials mass loading(8 and 25 mg⋅cm^(-2)).The results show that under low mass loading,the side reaction between the CAs and the SSEs deteriorates the performance of the cell,while the charge transfer promotion caused by the addition of CAs is only manifested under high mass loading.Furthermore,the gradient design strategy(enrichment of CAs near the current collector side and depletion of CAs near the electrolyte side)is applied to maximize the benefits of CAs in electron transport and reduce the adverse effects of CAs.The charge carrier transport barrier inside the high mass loading electrode is significantly reduced through the regulation of electronic conductivity.Consequently,the optimized electrode achieves a high areal capacity of 5.6 mAh⋅cm^(-2)at high current density(1.25 mA⋅cm2,0.2℃)at 25℃with a capacity retention of 87.85%after 100 cycles.This work provides a promising way for the design of high-mass loading electrodes with practical application value. 展开更多
关键词 All-solid-state-batteries Conductive agents Sulfide electrolytes high mass loading Gradient designing
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部