In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points...In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.展开更多
A compact high power diode-pumped passively mode-locked Nd:YVO_4 laser with high repetition rate is realized.Using an Nd:YVO_4 crystal and a semiconductor saturable absorber mirror(SESAM) in the oscillator, the picose...A compact high power diode-pumped passively mode-locked Nd:YVO_4 laser with high repetition rate is realized.Using an Nd:YVO_4 crystal and a semiconductor saturable absorber mirror(SESAM) in the oscillator, the picosecond pulse output with an average power of 1.38 W, a repetition rate of 3.24 GHz, and a pulse duration of 11.4 ps is achieved. After one stage of amplification, the final output power reaches 11.34 W, corresponding to a total optical-to-optical efficiency of about 32%. The root mean square(RMS) value of power fluctuation is demonstrated to be less than 0.6% in 24 hours,showing a superior stability with the compact configuration.展开更多
We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium a...We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity.247-fs pulses with an average power of 11 W could also be obtained by using a 2.4 mm hard aperture.Based on this shorter pulse,high efficient second-harmonic generation(SHG) was performed with a 1.7-mm-long Li B3O5(LBO) crystal.The SHG laser power was up to 5 W with the power fluctuation RMS of 1% measured over one hour.展开更多
A new high dynamic synchronization algorithm using cyclic spectral density was presented according to the theories of cyclic spectral density and its anti-interface and anti-noise properties.The closed forms of freque...A new high dynamic synchronization algorithm using cyclic spectral density was presented according to the theories of cyclic spectral density and its anti-interface and anti-noise properties.The closed forms of frequency error and phase error were obtained,and their performances were analyzed.The in-phase signal throw costas loop was normalized to obtain a cosine signal.Cyclic spectral density of the cosine signal of was computed to obtain the frequency error and the phase error and then results were put into NCO to synchronize.Finally,the performance of the presented algorithms was compared with the conventional algorithms by virtue of simulations,and the simulation results proved the correctness and the superiority of the new algorithms.展开更多
Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror(SESAM). 12.1 W mode-locked pulses were obtained with...Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror(SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit.展开更多
同步参考坐标系锁相环是高压直流(high voltage direct current,HVDC)同步触发控制系统中广泛应用的一种窄带宽锁相环,在交流系统故障引起相位跳变情况下,其动态响应缓慢。为增大锁相环的带宽,一种滑动平均滤波器(moving average filter...同步参考坐标系锁相环是高压直流(high voltage direct current,HVDC)同步触发控制系统中广泛应用的一种窄带宽锁相环,在交流系统故障引起相位跳变情况下,其动态响应缓慢。为增大锁相环的带宽,一种滑动平均滤波器(moving average filter,MAF)被前置于锁相环路,然而MAF本身存在响应延迟,制约了锁相环的同步速度。为了缓解响应延迟问题,文中提出一种考虑MAF延时和前馈补偿的HVDC快速锁相环。首先,利用MAF线性暂态特征预测相位变化,并分别针对故障接入和切除引起的相位跳变问题提出不同的补偿策略;接着,利用不变性原理对锁相环路进行前馈补偿,在负反馈控制和前馈补偿共同构成的复合校正控制系统的作用下,锁相环能够在较小PI参数下实现快速响应;最后,将所提快速锁相环在CIGRE HVDC标准模型和三峡—上海直流工程模型中进行仿真验证。结果表明,该快速锁相环能够有效缓解滤波器响应延迟的制约,缩短失锁时间,进而提高高压直流逆变侧抵御换相失败的能力。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11773060,11973074,U1831137 and 11703070)National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB16030200)the National Natural Science Foundation of China(Grant Nos.11774410 and 61575217)+1 种基金the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.KJZD-EW-L11-03)
文摘A compact high power diode-pumped passively mode-locked Nd:YVO_4 laser with high repetition rate is realized.Using an Nd:YVO_4 crystal and a semiconductor saturable absorber mirror(SESAM) in the oscillator, the picosecond pulse output with an average power of 1.38 W, a repetition rate of 3.24 GHz, and a pulse duration of 11.4 ps is achieved. After one stage of amplification, the final output power reaches 11.34 W, corresponding to a total optical-to-optical efficiency of about 32%. The root mean square(RMS) value of power fluctuation is demonstrated to be less than 0.6% in 24 hours,showing a superior stability with the compact configuration.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922402)the National Major Instrument Program of China(Grant No.2012YQ120047)the National Natural Science Foundation of China(Grant Nos.11434016 and 61210017)
文摘We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity.247-fs pulses with an average power of 11 W could also be obtained by using a 2.4 mm hard aperture.Based on this shorter pulse,high efficient second-harmonic generation(SHG) was performed with a 1.7-mm-long Li B3O5(LBO) crystal.The SHG laser power was up to 5 W with the power fluctuation RMS of 1% measured over one hour.
基金Sponsored by the National Basic Research Program (Grant No. 2007CB310601)the High Technology Research and Development Program of China(Grant No. 2007AA12Z338)
文摘A new high dynamic synchronization algorithm using cyclic spectral density was presented according to the theories of cyclic spectral density and its anti-interface and anti-noise properties.The closed forms of frequency error and phase error were obtained,and their performances were analyzed.The in-phase signal throw costas loop was normalized to obtain a cosine signal.Cyclic spectral density of the cosine signal of was computed to obtain the frequency error and the phase error and then results were put into NCO to synchronize.Finally,the performance of the presented algorithms was compared with the conventional algorithms by virtue of simulations,and the simulation results proved the correctness and the superiority of the new algorithms.
基金Project supported by the National Key Basic Research Program of China(Grant No.2013CB922402)the National Major Instrument Program of China(Grant No.2012YQ120047)the National Natural Science Foundation of China(Grant No.61210017)
文摘Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror(SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit.
文摘同步参考坐标系锁相环是高压直流(high voltage direct current,HVDC)同步触发控制系统中广泛应用的一种窄带宽锁相环,在交流系统故障引起相位跳变情况下,其动态响应缓慢。为增大锁相环的带宽,一种滑动平均滤波器(moving average filter,MAF)被前置于锁相环路,然而MAF本身存在响应延迟,制约了锁相环的同步速度。为了缓解响应延迟问题,文中提出一种考虑MAF延时和前馈补偿的HVDC快速锁相环。首先,利用MAF线性暂态特征预测相位变化,并分别针对故障接入和切除引起的相位跳变问题提出不同的补偿策略;接着,利用不变性原理对锁相环路进行前馈补偿,在负反馈控制和前馈补偿共同构成的复合校正控制系统的作用下,锁相环能够在较小PI参数下实现快速响应;最后,将所提快速锁相环在CIGRE HVDC标准模型和三峡—上海直流工程模型中进行仿真验证。结果表明,该快速锁相环能够有效缓解滤波器响应延迟的制约,缩短失锁时间,进而提高高压直流逆变侧抵御换相失败的能力。