The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion c...The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.展开更多
The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix...The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.展开更多
The solidification behaviors of AZ61 magnesium alloy under a high magnetic field were studied. The corrosion property of AZ61 alloy was investigated in a solution of 3.5 mol/L NaCI by measuring electrochemical p.olari...The solidification behaviors of AZ61 magnesium alloy under a high magnetic field were studied. The corrosion property of AZ61 alloy was investigated in a solution of 3.5 mol/L NaCI by measuring electrochemical p.olarization. The results show that the high magnetic field can refine microstructure and benefit aluminum transfer. The crystal of α-Mg is induced to orient with their c-axis parallel to the magnetic field. The corrosion studies indicate that different crystal plane of magnesium has different corrosion property. The passivating films on the α- and b-planes have higher corrosion resistance than that on the c-plane. Aligned structure affects the corrosion property of AZ61 magnesium alloy.展开更多
To investigate the influence of high magnetic field (HMF) on the solidification microstructure of Cu-25wt.%Ag alloy, the Cu-25wt.%Ag alloy was prepared under HMF of 12 T, and for comparison, the alloy solidified witho...To investigate the influence of high magnetic field (HMF) on the solidification microstructure of Cu-25wt.%Ag alloy, the Cu-25wt.%Ag alloy was prepared under HMF of 12 T, and for comparison, the alloy solidified without HMF was also fabricated. Macro and microstructures of the alloys were observed using the stereomicroscope, and scanning electron microscope, field emission scanning electron microscopy. The weight percentages of the pro-eutectic and eutectic, Cu phase and Ag phase in eutectic, and precipitates of Ag phase in pro-eutectic were analyzed by using of IPP software. Results show that the morphology of the column dendrites changes into cellular dendrites and the grains are refined under HMF of 12 T. Meanwhile, the thickness of the eutectic wall increases, but the sizes of Cu phase and Ag phase and the eutectic lamellar spacings are decreased. The Ag precipitates in the Cu matrix become coarser and sparser. The weight percentage variation of the phases in the microstructure and the Cu-Ag binary phase diagram reveals that the eutectic point moves to the left of the eutectic point in the equilibrium condition and the supersaturated solid solubility of Ag decreases under HMF.展开更多
The liquid phase separation behavior and the evolution of the solidification microstructure of a binary Cu_(50)Fe_(50) alloy were investigated under the conditions of without and with a 10 T magnetic field,with differ...The liquid phase separation behavior and the evolution of the solidification microstructure of a binary Cu_(50)Fe_(50) alloy were investigated under the conditions of without and with a 10 T magnetic field,with different undercooling during the solidification process.Results show that the combined effect of Stokes motion and Marangoni convection leads to the formation of the core-shell structure under the condition without the magnetic field.In addition,specific gravity segregation is reinforced by increasing the undercooling,resulting in Fe-rich phase drifts towards the sample edge.In the 10 T magnetic field,the Fe-rich phase is elongated in the parallel direction of the magnetic field under the action of demagnetization energy due to the difference of static magnetic energy and surface energy.In the vertical direction,through the action of Lorentz force,the convection in the melt is inhibited and Fe-rich phase becomes more dispersed.Meanwhile,the diffusion of the two phases and the coagulation of the Fe-rich phases are also restrained under the magnetic field,therefore,the phase volume fraction of the Fe-rich phase decreases at the same undercooling in the 10 T magnetic field.The magnetic field inhibits the segregation behavior in the vertical direction of the magnetic field,and at the same time,improves the gravitational segregation to a certain extent,which has a very important impact on microstructure regulation.展开更多
Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field wa...Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014.This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC.In addition,it will describe the application development of pulsed magnetic fields in both scientific and industrial research.展开更多
The effect of high magnetic fields on the morphology of Al-Mn phases was investigated. It is found that the tropism and the alignment of Al6Mn precipitated phases become regular under high magnetic fields. The stronge...The effect of high magnetic fields on the morphology of Al-Mn phases was investigated. It is found that the tropism and the alignment of Al6Mn precipitated phases become regular under high magnetic fields. The stronger the high magnetic fields, the more regular the alignment of Al6Mn precipitated phases. Al6Mn precipitated phases can generate oriented alignment and aggregation under high magnetic fields through the observation of the quenched microstructure of the Al-Mn alloy at different temperatures. Meanwhile, the number of Al6Mn phases increases continuously along with the increasing function time of high magnetic fields. X-ray diffraction also indicates that Al6Mn phases generate obvious tropism under high magnetic fields. The process of aggregation and growth of Al6Mn precipitated phases under the function of high magnetic fields after orientation were analyzed and discussed.展开更多
The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was reali...The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5×10^-3-10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B0of 6300 G.Ar HWP with electron density~10^18–10^20m^-3 and electron temperature~4–7 e V was produced at high B0 of 5100 G,with an RF power of 1500 W.Maximum Ar^+ion flux of 7.8×10^23m^-2s^-1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar^+ ion-beams of 40.1 eV are formed,which are supersonic(~3.1cs).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1×10^24N2/m^2 h.展开更多
Tb0.3Dy0.TFe1.95 alloys are solidified under various high magnetic field conditions. The influence of a high magnetic field on the crystal orientation, morphology and magnetostriction of the alloys are studied. The re...Tb0.3Dy0.TFe1.95 alloys are solidified under various high magnetic field conditions. The influence of a high magnetic field on the crystal orientation, morphology and magnetostriction of the alloys are studied. The results show that with the increase of magnetic flux density, the crystal orientation of the (Tb,Dy)Fe2 phase changed from (113) to (111) direction; the grains in the alloys tended to align along the magnetic field direction; and the magnetostriction of Tb0.3Dy0.7Fe1.95 alloys is remarkably improved. The change in magnetostriction of Tb0.3Dy0.TFe1.95 alloys is linked to the amount and the crystal orientation behavior of the (Tb,Dy)Fe2 phase.展开更多
Since high magnetic field(MF) intensity can improve the image quality and reduce magnetic resonance imaging(MRI) acquisition time, the field intensity of MRIs has continued to increase over the past few decades. A...Since high magnetic field(MF) intensity can improve the image quality and reduce magnetic resonance imaging(MRI) acquisition time, the field intensity of MRIs has continued to increase over the past few decades. Although MRIs in most current hospitals are 0.5 T–3 T, there are preclinical studies have been carried out using 9.4 T MRI, and engineers are also putting efforts on building MRIs with even higher MFs. However, the accompanied safety issue of high-field MRIs is an emergent question to address before their clinical applications. In the meantime, the static magnetic field(SMF) has been shown to inhibit tumor growth in previous studies. Here, we investigated both the safety issue and the anti-tumor potentials of 3.7 T–24.5 T SMFs on GIST-T1 gastrointestinal stromal tumor-bearing nude mice. We followed up the mice three weeks after their exposure to high SMF and found that none of the mice died or had severe organ damage, except for slightly decreased food intake, weight gain, and liver function. Moreover, the tumor growth was inhibited by 3.7 T–24.5 T SMFs(up to ~54%). It is interesting that the effects are more dependent on MF gradient than intensities, and for the same gradient and intensity, mice responded differently to hypogravity and hypergravity conditions. Therefore, our study not only demonstrated the safeness of high SMFs up to 24.5 T on mice but also revealed their anti-tumor potentials in the future.展开更多
The effects of high magnetic field on the crystallization behavior of the Fe78Si13B9 metallic glass ribbon were studied. The samples were isothermal annealed for 30 min under high magnetic field and no field,respectiv...The effects of high magnetic field on the crystallization behavior of the Fe78Si13B9 metallic glass ribbon were studied. The samples were isothermal annealed for 30 min under high magnetic field and no field,respectively. Microstructure transformation during crystallization was identified by X-ray diffraction and transmission electron microscopy. It was found that the crystallizations of Fe78Si13B9 metallic glass processed under different conditions were that the precipitation of dendrite α-Fe(Si) and spherulite (Fe,Si)3B phases forms amorphous matrix and then the metastable (Fe,Si)3B phase transforms into the stable Fe2B phase. The grain size of the crystals is smaller and more homogeneous for the isothermal annealed samples under high magnetic field in comparison with that under no field indicating that the crystallization behavior of Fe78Si13B9 metallic glass is suppressed by high magnetic field.展开更多
Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved t...Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.展开更多
Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts:...Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs,a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs.展开更多
Solidification structures of Bi-Mn alloys solidified in a magnetic field up to 10 T were investigated experiemtaliy. The solidification of the alloy from melt or semisolid in the magnetic field was carded out. The ali...Solidification structures of Bi-Mn alloys solidified in a magnetic field up to 10 T were investigated experiemtaliy. The solidification of the alloy from melt or semisolid in the magnetic field was carded out. The alignment-retaining behavior of the alignment of BiMn structure during reheating of the alloy, which was obtained by solidification in the magnetic field, was also investigated. It was found that with different temperatures of starting solidification the structures were varied, namely, in the temperature zone below Curie point a rod-like BiMn gains appeared, in the zone above Curie point and below the liquidus a flake-like BiMn grains appeared, and in the case of completed melt tightly piled flake-like BiMn grains were produced. In all these cases, the grains were aligned and orientated with 〈 001 〉 along the direction of the field. When the alloy with rod-BiMn grains was reheated to below Curie point, the alignment of the BiMn was kept, while reheated to above Curie point, the alignment was destroyed.展开更多
We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields...We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.展开更多
The magnetization behavior of a CuFeO2 single crystal grown by the floating zone technique is investigated with a pulsed high magnetic field. We observe a series of field-induced multi-step-like transitions with hyste...The magnetization behavior of a CuFeO2 single crystal grown by the floating zone technique is investigated with a pulsed high magnetic field. We observe a series of field-induced multi-step-like transitions with hysteresis, of which the critical magnetic fields are temperature-dependent and show anisotropy. By using a pulsed high magnetic field up to 75 T, the magnetization behavior shows that the critical transition magnetic fields of spin- flip/flop shift to lower field regions with an increase in temperature. According to the magnetization curves, a complete magnetic phase diagram is depicted.展开更多
The effect of magnetic field on the growth behavior of compound layer was examined at the interface between the solid Cu and liquid AI during reactive diffusion. It was found that the thickness of compound layer was r...The effect of magnetic field on the growth behavior of compound layer was examined at the interface between the solid Cu and liquid AI during reactive diffusion. It was found that the thickness of compound layer was reduced by the high magnetic field. The growth activation energy in β, γ1 and ε2 layers under a high magnetic field was larger than those in non magnetic circumstances, the increment percentage being 4.8%, 13.3% and 5.5%, respectively.展开更多
The effect of a high magnetic field on the microstructural evolution of a peritectic Al—18 at.%Ni alloy during directional solidification and its dependence on pulling speed were investigated.At a low pulling speed,t...The effect of a high magnetic field on the microstructural evolution of a peritectic Al—18 at.%Ni alloy during directional solidification and its dependence on pulling speed were investigated.At a low pulling speed,the application of a 2 T magnetic field triggered the appearance of a primary Al_(3)Ni_(2)phase.At higher pulling speeds,a high magnetic field application induced primary Al_(3)Ni_(2)phase segregation that formed close to the central alloy regions.For all pulling speeds,the application of a high magnetic field induced bulk Al_(3)Ni/Al eutectic formation on the upper and lower parts of the alloys,and promoted elongated growth of the peritectic Al_3Ni phase along the magnetic field direction.Microstructural analysis indicated that microstructural evolution that was induced by high magnetic fields can be attributed to solute migration and melt flow that is regulated by magnetic,Lorentz,and thermoelectric magnetic forces and their coupling effects during peritectic solidification.展开更多
The influence of a high magnetic field(HMF)on the nucleation kinetics of paramagnetic aluminum and diamagnetic zinc melts has been investigated by differential thermal analysis(DTA).It is found that the application of...The influence of a high magnetic field(HMF)on the nucleation kinetics of paramagnetic aluminum and diamagnetic zinc melts has been investigated by differential thermal analysis(DTA).It is found that the application of an HMF increases the undercooling of pure aluminum and pure zinc at the same heatingcooling rates.Moreover,the quantitative analysis of activation energy calculated from the DTA results using the Kissinger method manifests that the HMF reduces the activation energy of pure aluminum and pure zinc.Regardless of magnetism,the nucleation frequency under an HMF is higher than that without an HMF.Furthermore,the increase in undercooling under the HMF is mainly attributed to the increase of the contact angle,calculated by the functional relationship between the cooling rate and undercooling.This result is consistent with the increase of the calculated nucleation work for pure aluminum and pure zinc.Additionally,the increase in undercooling caused by the HMF is partly ascribed to the magnetic field-induced suppression of thermal convection in the undercooled melt.展开更多
Super-fine L1_(0)-Fe Pt nanoparticles(NPs)with high ordering degree were successfully prepared by a modified two-step sintering method,which includes low-temperature pre-sintering,and the high magnetic field(HMF)assis...Super-fine L1_(0)-Fe Pt nanoparticles(NPs)with high ordering degree were successfully prepared by a modified two-step sintering method,which includes low-temperature pre-sintering,and the high magnetic field(HMF)assisted post-sintering processes.The particle size of the L1_(0)-FePt NPs was obviously refined by lowering the sintering temperature.By applying the HMF during the post-sintering process,the fine size characteristics of L1_(0)-Fe Pt NPs were retained,and the ordering degree was significantly improved.The L1_(0)-Fe Pt NPs with sizes of about 4.5 nm,ordering degree of 0.940,and coercivity of 22.01 k Oe were obtained by this two-step sintering under a magnetic field of 12 T.The mechanism investigation of HMF enhancing the ordering degree indicates that the HMF enhances lattice distortion and magnetization energy(Zeeman energy).The enhanced lattice distortions cause high stress existing in the lattice,which can effectively promote the disordered-order transition.When the magnetic field reaches to 3 T,the Zeeman energy of the NPs is higher than the thermal disturbing energy of the NPs,and the magnetization effect is stronger.Therefore,the HMF(higher than 3 T)can obviously improve the disorder-order transition by lowering the energy barrier and accelerating the orderly diffusions of atoms.The HMF is a promising assistant to synthesize the L1_(0)-phase NPs with both of high ordering degree and super-fine size.展开更多
基金Project(2011CB012803) supported by the National Basic Research Program of ChinaProject(NCET-10-0278) supported by Program for New Century Excellent Talents in University,China
文摘The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.
基金supported by the National Natural Science Foundation of China under grant No. 10477006the Key Project of Chinese Ministry of Education undergrant No. 106055
文摘The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.
基金This work was supported by the National Natural Science Foundation of China under grant No.50234020 and 50475157the Key Project by Ministry of Education of China(No.105052).
文摘The solidification behaviors of AZ61 magnesium alloy under a high magnetic field were studied. The corrosion property of AZ61 alloy was investigated in a solution of 3.5 mol/L NaCI by measuring electrochemical p.olarization. The results show that the high magnetic field can refine microstructure and benefit aluminum transfer. The crystal of α-Mg is induced to orient with their c-axis parallel to the magnetic field. The corrosion studies indicate that different crystal plane of magnesium has different corrosion property. The passivating films on the α- and b-planes have higher corrosion resistance than that on the c-plane. Aligned structure affects the corrosion property of AZ61 magnesium alloy.
基金supported by the National High-Tech Research and Development Program of China(No.2007AA03Z519)the Talents Introduction and Discipline Innovation Program for Higher Education(No.B07015)the Program of "High Grade Numerical Control Machine Tool and Basic Equipment" Major Science and Technology Project(No.2012ZX04010031)
文摘To investigate the influence of high magnetic field (HMF) on the solidification microstructure of Cu-25wt.%Ag alloy, the Cu-25wt.%Ag alloy was prepared under HMF of 12 T, and for comparison, the alloy solidified without HMF was also fabricated. Macro and microstructures of the alloys were observed using the stereomicroscope, and scanning electron microscope, field emission scanning electron microscopy. The weight percentages of the pro-eutectic and eutectic, Cu phase and Ag phase in eutectic, and precipitates of Ag phase in pro-eutectic were analyzed by using of IPP software. Results show that the morphology of the column dendrites changes into cellular dendrites and the grains are refined under HMF of 12 T. Meanwhile, the thickness of the eutectic wall increases, but the sizes of Cu phase and Ag phase and the eutectic lamellar spacings are decreased. The Ag precipitates in the Cu matrix become coarser and sparser. The weight percentage variation of the phases in the microstructure and the Cu-Ag binary phase diagram reveals that the eutectic point moves to the left of the eutectic point in the equilibrium condition and the supersaturated solid solubility of Ag decreases under HMF.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52174375 and 51690163)the fund of the State Key Laboratory of Solidification Processing in NWPU(No.2021-TS-01)+1 种基金the Innovation Capability Support Program of Shaanxi(No.2020KJXX-073)the Fundamental Research Funds for the Central Universities.
文摘The liquid phase separation behavior and the evolution of the solidification microstructure of a binary Cu_(50)Fe_(50) alloy were investigated under the conditions of without and with a 10 T magnetic field,with different undercooling during the solidification process.Results show that the combined effect of Stokes motion and Marangoni convection leads to the formation of the core-shell structure under the condition without the magnetic field.In addition,specific gravity segregation is reinforced by increasing the undercooling,resulting in Fe-rich phase drifts towards the sample edge.In the 10 T magnetic field,the Fe-rich phase is elongated in the parallel direction of the magnetic field under the action of demagnetization energy due to the difference of static magnetic energy and surface energy.In the vertical direction,through the action of Lorentz force,the convection in the melt is inhibited and Fe-rich phase becomes more dispersed.Meanwhile,the diffusion of the two phases and the coagulation of the Fe-rich phases are also restrained under the magnetic field,therefore,the phase volume fraction of the Fe-rich phase decreases at the same undercooling in the 10 T magnetic field.The magnetic field inhibits the segregation behavior in the vertical direction of the magnetic field,and at the same time,improves the gravitational segregation to a certain extent,which has a very important impact on microstructure regulation.
基金We gratefully acknowledge the financial support of the National Key Research and Development Program of China(2016YFA0401700).
文摘Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014.This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC.In addition,it will describe the application development of pulsed magnetic fields in both scientific and industrial research.
基金supported by the National Natural Science Foundation of China (No. 50674018)
文摘The effect of high magnetic fields on the morphology of Al-Mn phases was investigated. It is found that the tropism and the alignment of Al6Mn precipitated phases become regular under high magnetic fields. The stronger the high magnetic fields, the more regular the alignment of Al6Mn precipitated phases. Al6Mn precipitated phases can generate oriented alignment and aggregation under high magnetic fields through the observation of the quenched microstructure of the Al-Mn alloy at different temperatures. Meanwhile, the number of Al6Mn phases increases continuously along with the increasing function time of high magnetic fields. X-ray diffraction also indicates that Al6Mn phases generate obvious tropism under high magnetic fields. The process of aggregation and growth of Al6Mn precipitated phases under the function of high magnetic fields after orientation were analyzed and discussed.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2014GB106005 and 2010GB106000)National Natural Science Foundation of China(Nos.11505123 11435009 11375126)a Project funded by China Postdoctoral Science Foundation(No.156455)
文摘The high magnetic field helicon experiment system is a helicon wave plasma(HWP)source device in a high axial magnetic field(B0)developed for plasma–wall interactions studies for fusion reactors.This HWP was realized at low pressure(5×10^-3-10 Pa)and a RF(radio frequency,13.56 MHz)power(maximum power of 2 k W)using an internal right helical antenna(5 cm in diameter by 18 cm long)with a maximum B0of 6300 G.Ar HWP with electron density~10^18–10^20m^-3 and electron temperature~4–7 e V was produced at high B0 of 5100 G,with an RF power of 1500 W.Maximum Ar^+ion flux of 7.8×10^23m^-2s^-1 with a bright blue core plasma was obtained at a high B0 of 2700 G and an RF power of 1500 W without bias.Plasma energy and mass spectrometer studies indicate that Ar^+ ion-beams of 40.1 eV are formed,which are supersonic(~3.1cs).The effect of Ar HWP discharge cleaning on the wall conditioning are investigated by using the mass spectrometry.And the consequent plasma parameters will result in favorable wall conditioning with a removal rate of 1.1×10^24N2/m^2 h.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51425401 and 51271056the Fundamental Research Funds for the Central Universities under Grant Nos N140901001 and N140902001the Doctoral Scientific Research Foundation of Liaoning Province under Grant No 20131034
文摘Tb0.3Dy0.TFe1.95 alloys are solidified under various high magnetic field conditions. The influence of a high magnetic field on the crystal orientation, morphology and magnetostriction of the alloys are studied. The results show that with the increase of magnetic flux density, the crystal orientation of the (Tb,Dy)Fe2 phase changed from (113) to (111) direction; the grains in the alloys tended to align along the magnetic field direction; and the magnetostriction of Tb0.3Dy0.7Fe1.95 alloys is remarkably improved. The change in magnetostriction of Tb0.3Dy0.TFe1.95 alloys is linked to the amount and the crystal orientation behavior of the (Tb,Dy)Fe2 phase.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFA0400900 and 2017YFA0402903)the National Natural Science Foundation of China(Grant Nos.U1532151 and 51627901)+2 种基金the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science,Technology(Grant No.2016FXCX004)Hefei Science Center,CAS(Grant No.2016HSC-IU007)the CASHIPS Director’s Fund(Grant No.YZJJ201704)to Qingyou Lu and Xin Zhang
文摘Since high magnetic field(MF) intensity can improve the image quality and reduce magnetic resonance imaging(MRI) acquisition time, the field intensity of MRIs has continued to increase over the past few decades. Although MRIs in most current hospitals are 0.5 T–3 T, there are preclinical studies have been carried out using 9.4 T MRI, and engineers are also putting efforts on building MRIs with even higher MFs. However, the accompanied safety issue of high-field MRIs is an emergent question to address before their clinical applications. In the meantime, the static magnetic field(SMF) has been shown to inhibit tumor growth in previous studies. Here, we investigated both the safety issue and the anti-tumor potentials of 3.7 T–24.5 T SMFs on GIST-T1 gastrointestinal stromal tumor-bearing nude mice. We followed up the mice three weeks after their exposure to high SMF and found that none of the mice died or had severe organ damage, except for slightly decreased food intake, weight gain, and liver function. Moreover, the tumor growth was inhibited by 3.7 T–24.5 T SMFs(up to ~54%). It is interesting that the effects are more dependent on MF gradient than intensities, and for the same gradient and intensity, mice responded differently to hypogravity and hypergravity conditions. Therefore, our study not only demonstrated the safeness of high SMFs up to 24.5 T on mice but also revealed their anti-tumor potentials in the future.
基金the National Natural Science Foundation of China (No50471067)
文摘The effects of high magnetic field on the crystallization behavior of the Fe78Si13B9 metallic glass ribbon were studied. The samples were isothermal annealed for 30 min under high magnetic field and no field,respectively. Microstructure transformation during crystallization was identified by X-ray diffraction and transmission electron microscopy. It was found that the crystallizations of Fe78Si13B9 metallic glass processed under different conditions were that the precipitation of dendrite α-Fe(Si) and spherulite (Fe,Si)3B phases forms amorphous matrix and then the metastable (Fe,Si)3B phase transforms into the stable Fe2B phase. The grain size of the crystals is smaller and more homogeneous for the isothermal annealed samples under high magnetic field in comparison with that under no field indicating that the crystallization behavior of Fe78Si13B9 metallic glass is suppressed by high magnetic field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374103 and 10574143), and the National Basic Research Program of China (Grant No 2001CB309309).
文摘Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11975163 and 12175160)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs,a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs.
文摘Solidification structures of Bi-Mn alloys solidified in a magnetic field up to 10 T were investigated experiemtaliy. The solidification of the alloy from melt or semisolid in the magnetic field was carded out. The alignment-retaining behavior of the alignment of BiMn structure during reheating of the alloy, which was obtained by solidification in the magnetic field, was also investigated. It was found that with different temperatures of starting solidification the structures were varied, namely, in the temperature zone below Curie point a rod-like BiMn gains appeared, in the zone above Curie point and below the liquidus a flake-like BiMn grains appeared, and in the case of completed melt tightly piled flake-like BiMn grains were produced. In all these cases, the grains were aligned and orientated with 〈 001 〉 along the direction of the field. When the alloy with rod-BiMn grains was reheated to below Curie point, the alignment of the BiMn was kept, while reheated to above Curie point, the alignment was destroyed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074135,12104388,and 52272219)Nanyang Normal University,the Natural Science Foundation of Henan Province (Grant Nos.222300420255 and 232300421220)the Key Scientific and Technological Projiect of Technology Depeartment of Henan Province of China (Grant Nos.222102230105 and 212102210448)。
文摘We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.
基金Supported by the National Natural Science Foundation of China under Grant No 11104091the Guangxi Key Laboratory of Information Materials of Guilin University of Electronic Technology under Grant No 1210908-05-K
文摘The magnetization behavior of a CuFeO2 single crystal grown by the floating zone technique is investigated with a pulsed high magnetic field. We observe a series of field-induced multi-step-like transitions with hysteresis, of which the critical magnetic fields are temperature-dependent and show anisotropy. By using a pulsed high magnetic field up to 75 T, the magnetization behavior shows that the critical transition magnetic fields of spin- flip/flop shift to lower field regions with an increase in temperature. According to the magnetization curves, a complete magnetic phase diagram is depicted.
基金supported by the National Natural Science Foundation of China (No. 50871026)the 111 Project(B07015)+2 种基金Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 200745)Program for New Century Excellent Talents in University (NCET-06-0288)the Fundamental Research Funds for the Central Universities (N090109001)
文摘The effect of magnetic field on the growth behavior of compound layer was examined at the interface between the solid Cu and liquid AI during reactive diffusion. It was found that the thickness of compound layer was reduced by the high magnetic field. The growth activation energy in β, γ1 and ε2 layers under a high magnetic field was larger than those in non magnetic circumstances, the increment percentage being 4.8%, 13.3% and 5.5%, respectively.
基金the National Natural Science Foundation of China(Nos.51690161,51774086,and 21701022)the Fundamental Research Funds for the Central Universities(Nos.N180915002,N170902002 and N170908001)Liaoning Innovative Research Team in University,China(No.LT2017011)。
文摘The effect of a high magnetic field on the microstructural evolution of a peritectic Al—18 at.%Ni alloy during directional solidification and its dependence on pulling speed were investigated.At a low pulling speed,the application of a 2 T magnetic field triggered the appearance of a primary Al_(3)Ni_(2)phase.At higher pulling speeds,a high magnetic field application induced primary Al_(3)Ni_(2)phase segregation that formed close to the central alloy regions.For all pulling speeds,the application of a high magnetic field induced bulk Al_(3)Ni/Al eutectic formation on the upper and lower parts of the alloys,and promoted elongated growth of the peritectic Al_3Ni phase along the magnetic field direction.Microstructural analysis indicated that microstructural evolution that was induced by high magnetic fields can be attributed to solute migration and melt flow that is regulated by magnetic,Lorentz,and thermoelectric magnetic forces and their coupling effects during peritectic solidification.
基金financially supported by the National Natural Science Foundation of China(Nos.51571056,51904183 and 51690164)“Shuguang Program”from Shanghai Municipal Education Commission+1 种基金China Postdoctoral Science Foundation(Nos.2018M640375 and 2019T120330)the Shanghai Science and Technology Committee Grant(Nos.19XD1401600 and 19010500300)。
文摘The influence of a high magnetic field(HMF)on the nucleation kinetics of paramagnetic aluminum and diamagnetic zinc melts has been investigated by differential thermal analysis(DTA).It is found that the application of an HMF increases the undercooling of pure aluminum and pure zinc at the same heatingcooling rates.Moreover,the quantitative analysis of activation energy calculated from the DTA results using the Kissinger method manifests that the HMF reduces the activation energy of pure aluminum and pure zinc.Regardless of magnetism,the nucleation frequency under an HMF is higher than that without an HMF.Furthermore,the increase in undercooling under the HMF is mainly attributed to the increase of the contact angle,calculated by the functional relationship between the cooling rate and undercooling.This result is consistent with the increase of the calculated nucleation work for pure aluminum and pure zinc.Additionally,the increase in undercooling caused by the HMF is partly ascribed to the magnetic field-induced suppression of thermal convection in the undercooled melt.
基金financially supported by the National Natural Science Foundation of China(Grant nos.51871045,52071070,and 51690161)the Fundamental Research Funds for the Central Universities(Grant no.N2017003)the Doctoral Start-up Foundation of Liaoning Province(Grant no.2019-BS-116)。
文摘Super-fine L1_(0)-Fe Pt nanoparticles(NPs)with high ordering degree were successfully prepared by a modified two-step sintering method,which includes low-temperature pre-sintering,and the high magnetic field(HMF)assisted post-sintering processes.The particle size of the L1_(0)-FePt NPs was obviously refined by lowering the sintering temperature.By applying the HMF during the post-sintering process,the fine size characteristics of L1_(0)-Fe Pt NPs were retained,and the ordering degree was significantly improved.The L1_(0)-Fe Pt NPs with sizes of about 4.5 nm,ordering degree of 0.940,and coercivity of 22.01 k Oe were obtained by this two-step sintering under a magnetic field of 12 T.The mechanism investigation of HMF enhancing the ordering degree indicates that the HMF enhances lattice distortion and magnetization energy(Zeeman energy).The enhanced lattice distortions cause high stress existing in the lattice,which can effectively promote the disordered-order transition.When the magnetic field reaches to 3 T,the Zeeman energy of the NPs is higher than the thermal disturbing energy of the NPs,and the magnetization effect is stronger.Therefore,the HMF(higher than 3 T)can obviously improve the disorder-order transition by lowering the energy barrier and accelerating the orderly diffusions of atoms.The HMF is a promising assistant to synthesize the L1_(0)-phase NPs with both of high ordering degree and super-fine size.