With the increasing of complexity of complex mechatronic products, it is necessary to involve multidis- ciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes...With the increasing of complexity of complex mechatronic products, it is necessary to involve multidis- ciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisci- plinary customer requirements modeling method is pro- vided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with dif- ferent team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.展开更多
A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achi...A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achieved.According to the model,a probe-type nano-modified fiber optic configurable plasmonic resonance(NMF-CPR)sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332-1.3432 corresponding to the low-concentration biomarker solution.The new-type sensing structure avoids excessive broadening and redshift of the resonance dip,which provides more possibilities for the surface modification of other functional nanomaterials.The tip hot spots in nanogaps between the Au layer and Au nanostars(AuNSs),the tip electric field enhancement of AuNSs,and the high carrier mobility of the WSe_(2)layer synergistically and significantly enhance the sensitivity of the sensor.Ex-perimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU^(−1),respectively,which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.The results achieve good agreements with numerical simulations,demonstrate a better level compared to similar reported studies,and verify the correctness of the dispersion model.The detection resolution of the sensor reaches up to 2.00×10^(−5)RIU,which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor.This indicates a high detection accuracy of the sensor.The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation,which enables the sensor with high stability.Furthermore,the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.展开更多
In October, 2008, INVISTA, the leading global innovator of fiber technology, has opened the sixth INVISTA Rendez-Vous showcasing its fiber technology breakthroughs. Since 2004, INVISTA has been
The intermingling of regenerated nerve fibers inside nerve grafts is the main reason for mismatched nerve fibers. This is one of the key factors affecting limb function recovery after nerve injury. Previous research h...The intermingling of regenerated nerve fibers inside nerve grafts is the main reason for mismatched nerve fibers. This is one of the key factors affecting limb function recovery after nerve injury. Previous research has shown that the accuracy of axon regeneration can be improved by a bionic structural implant. To this aim, iodine and freeze-drying high-resolution micro-computed tomography was performed to visualize the 3D topography of the New Zealand rabbit sciatic nerve (25 mm). A series of 1-, 2-, 3-, and 4-custom anatomy-based nerve conduits (CANCs) were fabricated based on the anatomical structure of the nerve fascicle. The match index, luminal surface, and mechanical properties of CANCs were evaluated before implanting in a 10-mm gap of the sciatic nerve. Recovery was evaluated by histomorphometric analyses, electrophysiological study, gastrocnemius muscle weight recovery ratio, and behavioral assessments at 12 and 24 weeks postoperatively. The accuracy of nerve regeneration was determined by changes in fluorescence-labeled profile number during simultaneous retrograde tracing. Our results showed that the optimal preprocessing condition for high-resolution micro-computed tomography visualization was treatment of the sciatic nerve with 40% Lugol’s solution for 3 days followed by lyophilization for 2 days. In vitro experiments demonstrated that the match index was highest in the 3-CANC group, followed by the 2-, 1-, and 4-CANC groups. The luminal surface was lowest in the 1-CANC group. Mechanical properties (transverse compressive and bending properties) were higher in the 3- and 4-CANC groups than in the 1-CANC group. In vivo experiments demonstrated that the recovery (morphology of regenerated fibers, compound muscle action potential, gastrocnemius muscle weight recovery ratio, pain-related autotomy behaviors, and range of motion) in the 3-CANC group was superior to the other CANC groups, and achieved the same therapeutic effect as the autograft. The simultaneous retrograde tracing results showed that the percentages of double-labeled profiles of the 2-, 3-, and 4-CANC groups were comparatively lower than that of the 1-CANC group, which indicates that regenerated nerve fascicles were less intermingled in the 2-, 3-, and 4-CANC groups. These findings demonstrate that the visualization of the rabbit sciatic nerve can be achieved by iodine and freeze-drying high-resolution micro-computed tomography, and that this method can be used to design CANCs with different channels that are based on the anatomical structure of the nerve. Compared with the 1-CANC, 3-CANC had a higher match index and luminal surface, and improved the accuracy of nerve regeneration by limiting the intermingling of the regenerated fascicles. All procedures were approved by the Animal Care and Use Committee, Xinjiang Medical University, China on April 4, 2017 (ethics approval No. IACUC20170315-02).展开更多
基金Supported by Open Outreach Project of A New Biomimicry and Crowdsourcing Based Digital Design Platform for High Speed Train from State Key Laboratory of Traction PowerNational Natural Science Foundation of China(Grant No.51575461)
文摘With the increasing of complexity of complex mechatronic products, it is necessary to involve multidis- ciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisci- plinary customer requirements modeling method is pro- vided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with dif- ferent team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.
基金financial supports from in part by National Natural Science Foundation of China under Grants 61922061, 61775161 and 61735011in part by the Tianjin Science Fund for Distinguished Young Scholars under Grant 19JCJQJC61400
文摘A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achieved.According to the model,a probe-type nano-modified fiber optic configurable plasmonic resonance(NMF-CPR)sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332-1.3432 corresponding to the low-concentration biomarker solution.The new-type sensing structure avoids excessive broadening and redshift of the resonance dip,which provides more possibilities for the surface modification of other functional nanomaterials.The tip hot spots in nanogaps between the Au layer and Au nanostars(AuNSs),the tip electric field enhancement of AuNSs,and the high carrier mobility of the WSe_(2)layer synergistically and significantly enhance the sensitivity of the sensor.Ex-perimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU^(−1),respectively,which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.The results achieve good agreements with numerical simulations,demonstrate a better level compared to similar reported studies,and verify the correctness of the dispersion model.The detection resolution of the sensor reaches up to 2.00×10^(−5)RIU,which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor.This indicates a high detection accuracy of the sensor.The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation,which enables the sensor with high stability.Furthermore,the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.
文摘In October, 2008, INVISTA, the leading global innovator of fiber technology, has opened the sixth INVISTA Rendez-Vous showcasing its fiber technology breakthroughs. Since 2004, INVISTA has been
基金supported by the National Natural Science Foundation of China,No.81360270,81560357(both to AY),and 31670986(to QTZ)the Key Laboratory of Hand Reconstruction,Ministry of Health,China+1 种基金the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery of China,No.17DZ2270500(to AY)the Science and Technology Project of Guangdong Province of China,No.2014B020227001,2017A050501017(both to QTZ)
文摘The intermingling of regenerated nerve fibers inside nerve grafts is the main reason for mismatched nerve fibers. This is one of the key factors affecting limb function recovery after nerve injury. Previous research has shown that the accuracy of axon regeneration can be improved by a bionic structural implant. To this aim, iodine and freeze-drying high-resolution micro-computed tomography was performed to visualize the 3D topography of the New Zealand rabbit sciatic nerve (25 mm). A series of 1-, 2-, 3-, and 4-custom anatomy-based nerve conduits (CANCs) were fabricated based on the anatomical structure of the nerve fascicle. The match index, luminal surface, and mechanical properties of CANCs were evaluated before implanting in a 10-mm gap of the sciatic nerve. Recovery was evaluated by histomorphometric analyses, electrophysiological study, gastrocnemius muscle weight recovery ratio, and behavioral assessments at 12 and 24 weeks postoperatively. The accuracy of nerve regeneration was determined by changes in fluorescence-labeled profile number during simultaneous retrograde tracing. Our results showed that the optimal preprocessing condition for high-resolution micro-computed tomography visualization was treatment of the sciatic nerve with 40% Lugol’s solution for 3 days followed by lyophilization for 2 days. In vitro experiments demonstrated that the match index was highest in the 3-CANC group, followed by the 2-, 1-, and 4-CANC groups. The luminal surface was lowest in the 1-CANC group. Mechanical properties (transverse compressive and bending properties) were higher in the 3- and 4-CANC groups than in the 1-CANC group. In vivo experiments demonstrated that the recovery (morphology of regenerated fibers, compound muscle action potential, gastrocnemius muscle weight recovery ratio, pain-related autotomy behaviors, and range of motion) in the 3-CANC group was superior to the other CANC groups, and achieved the same therapeutic effect as the autograft. The simultaneous retrograde tracing results showed that the percentages of double-labeled profiles of the 2-, 3-, and 4-CANC groups were comparatively lower than that of the 1-CANC group, which indicates that regenerated nerve fascicles were less intermingled in the 2-, 3-, and 4-CANC groups. These findings demonstrate that the visualization of the rabbit sciatic nerve can be achieved by iodine and freeze-drying high-resolution micro-computed tomography, and that this method can be used to design CANCs with different channels that are based on the anatomical structure of the nerve. Compared with the 1-CANC, 3-CANC had a higher match index and luminal surface, and improved the accuracy of nerve regeneration by limiting the intermingling of the regenerated fascicles. All procedures were approved by the Animal Care and Use Committee, Xinjiang Medical University, China on April 4, 2017 (ethics approval No. IACUC20170315-02).