High temperature superconductivity in cuprates is explained in terms of 3d-orbital capture in copper. In elemental Cu 3d-orbital capture abstracts an electron from the 4 s2 valence orbital, and leaves it as 4 s1. This...High temperature superconductivity in cuprates is explained in terms of 3d-orbital capture in copper. In elemental Cu 3d-orbital capture abstracts an electron from the 4 s2 valence orbital, and leaves it as 4 s1. This is known since Cu occurs in Group IB of the Periodic Table. This forms an electron vacancy, or hole, in the valence shell. Therefore, the energy of 3d-orbital capture is stronger than the energy of unpairing of a paired-spin 4 s2 orbital. In cuprates 3d-orbital capture abstracts an electron from a Cu-O covalent bond, and leaves a hole in the excited state orbital. By electron-hole migration the excited state orbital leads to a coordinate covalent bond. This leads to superconductivity. The 3d-orbital process accounts for superconductivity and insulator behavior in cuprates. These results lend credence to the statement that 3d-orbital capture in copper is the cause of high temperature superconductivity.展开更多
For the final stage of a launch vehicle which cannot start multiple times,the main constraint of a highly eccentric orbit launch mission is the argument of perigee,which is conditioned by the range.This paper studies ...For the final stage of a launch vehicle which cannot start multiple times,the main constraint of a highly eccentric orbit launch mission is the argument of perigee,which is conditioned by the range.This paper studies the payload capacity at different launch sites for a highly eccentric orbit(e.g.GTO)and gives a method to improve the payload capacity with an argument of perigee constraint by increasing the sliding time before the final ignition and simultaneously adjusting the launch azimuth and yaw at the final stage.An example of launching to GTO orbit on a rocket from Hainan is given,which proves that the method has strong engineering value.展开更多
We investigate experimentally multi-orbital effects in high-order harmonic generation(HHG) from aligned CO2 and N2O molecules by intense femtosecond laser fields with linear and elliptical polarizations.For either of ...We investigate experimentally multi-orbital effects in high-order harmonic generation(HHG) from aligned CO2 and N2O molecules by intense femtosecond laser fields with linear and elliptical polarizations.For either of the aligned molecules, a minimum in the harmonic spectrum is observed, the position of which shifts to lower-order harmonics when decreasing the intensity or increasing the ellipticity of the driving laser.This indicates that the minimum originates from the dynamic interference of different channels, of which the tunneling ionization and recombination are contributed via different molecular orbitals.The results show that both the highest occupied molecular orbital(HOMO) and low-lying HOMO-2 in CO2(or HOMO-1 in N2O) contribute to the molecular HHG in both linearly and elliptically polarized strong laser fields.Our study would pave a way for understanding multi-electron dynamics from polyatomic molecules irradiated by strong laser fields.展开更多
We perform an experimental study of the multi-orbital effect on the high-order harmonic generation(HHG) from aligned N_2 molecules in both linearly and elliptically polarized intense laser fields.Measured by a home-bu...We perform an experimental study of the multi-orbital effect on the high-order harmonic generation(HHG) from aligned N_2 molecules in both linearly and elliptically polarized intense laser fields.Measured by a home-built extreme ultraviolet(XUV) flat grating spectrometer with the pump-probe method, the angular distributions of different orders of HHG are obtained, which show distinctive behaviors for harmonics in the plateau and the cut-off regions.The ellipticity dependence of HHG is investigated by aligning the molecular axis parallel or perpendicular to the laser polarization.Our results indicate that both the highest occupied molecular orbital(HOMO) as well as the lower one(HOMO-1) contribute to the HHG of N2 molecules, in either linearly or elliptically polarized intense laser field.The study paves the way for understanding the ultrafast electron dynamics of molecules exposed to an intense laser field.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
There are many appearances in the literature of reliable observations of studying so-called “jets” and “sprites” - the discharges in the gigantic natural capacitor “Ionosphere-Earth” [1]. The volume of such a di...There are many appearances in the literature of reliable observations of studying so-called “jets” and “sprites” - the discharges in the gigantic natural capacitor “Ionosphere-Earth” [1]. The volume of such a discharge is approximately 5-10 thousand cubic kilometers and usually it appears above the surface of ocean. There are the cases also of above mentioned discharges on the ground. The value of the energy transferred to the earth can comprise to several terajoule. Events are accompanied by the emission of the waves of ultra-low frequency. Their study has the significant interest from many points of view. The essence of the observed irregular phenomena consists of the electromechanical conversion of the energy excesses of natural electricity into mechanical and thermal energy of cyclones, typhoons and other natural cataclysms. The ionosphere can retain only the specific quantity of energy. Otherwise, it discards the surpluses of electricity through the atmosphere or transforms them into the energy of storms, in that number and inside the Earth. By using the part of the natural electricity for useful purposes it is possible to govern the weather of planet. Causing the artificial breakdowns of the ionosphere it could be possible to arrange the discharge of the controlled aqueous sediments at the necessary points of the globe. It could be possible as well to attempt to regulate the climate of planet and to decrease the amplitudes of the magnetic storms, earthquakes and hurricanes.展开更多
We have carried out magneto-transport measurements for single crystal SrMnSb2. Clear Shubnikov-de Haas oscil- lations were resolved at relatively low magnetic field around 4 T, revealing a quasi-2D Fermi surface. We o...We have carried out magneto-transport measurements for single crystal SrMnSb2. Clear Shubnikov-de Haas oscil- lations were resolved at relatively low magnetic field around 4 T, revealing a quasi-2D Fermi surface. We observed a development of quantized plateaus in Hall resistance (Rxy) at high pulsed fields up to 60 T. Due to the strong 2D confine- ment and layered properties of the samples, we interpreted the observation as bulk quantum Hall effect that is contributed by the parallel 2D conduction channels. Moreover, the spin degeneracy was lifted leading to Landau level splitting. The presence of anisotropic g factor and the formation of the oscillation beating pattern reveal a strong spin-orbit interaction in the SrMnSb2 system.展开更多
文摘High temperature superconductivity in cuprates is explained in terms of 3d-orbital capture in copper. In elemental Cu 3d-orbital capture abstracts an electron from the 4 s2 valence orbital, and leaves it as 4 s1. This is known since Cu occurs in Group IB of the Periodic Table. This forms an electron vacancy, or hole, in the valence shell. Therefore, the energy of 3d-orbital capture is stronger than the energy of unpairing of a paired-spin 4 s2 orbital. In cuprates 3d-orbital capture abstracts an electron from a Cu-O covalent bond, and leaves a hole in the excited state orbital. By electron-hole migration the excited state orbital leads to a coordinate covalent bond. This leads to superconductivity. The 3d-orbital process accounts for superconductivity and insulator behavior in cuprates. These results lend credence to the statement that 3d-orbital capture in copper is the cause of high temperature superconductivity.
文摘For the final stage of a launch vehicle which cannot start multiple times,the main constraint of a highly eccentric orbit launch mission is the argument of perigee,which is conditioned by the range.This paper studies the payload capacity at different launch sites for a highly eccentric orbit(e.g.GTO)and gives a method to improve the payload capacity with an argument of perigee constraint by increasing the sliding time before the final ignition and simultaneously adjusting the launch azimuth and yaw at the final stage.An example of launching to GTO orbit on a rocket from Hainan is given,which proves that the method has strong engineering value.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91750104,11534004,11874179,11127403,11474130)the Natural Science Foundation of Jilin Province,China(Grant No.20180101289JC)
文摘We investigate experimentally multi-orbital effects in high-order harmonic generation(HHG) from aligned CO2 and N2O molecules by intense femtosecond laser fields with linear and elliptical polarizations.For either of the aligned molecules, a minimum in the harmonic spectrum is observed, the position of which shifts to lower-order harmonics when decreasing the intensity or increasing the ellipticity of the driving laser.This indicates that the minimum originates from the dynamic interference of different channels, of which the tunneling ionization and recombination are contributed via different molecular orbitals.The results show that both the highest occupied molecular orbital(HOMO) and low-lying HOMO-2 in CO2(or HOMO-1 in N2O) contribute to the molecular HHG in both linearly and elliptically polarized strong laser fields.Our study would pave a way for understanding multi-electron dynamics from polyatomic molecules irradiated by strong laser fields.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91750104,11127403,and 11474130)the Natural Science Foundation of Jilin Province,China(Grant No.20160101332JC)
文摘We perform an experimental study of the multi-orbital effect on the high-order harmonic generation(HHG) from aligned N_2 molecules in both linearly and elliptically polarized intense laser fields.Measured by a home-built extreme ultraviolet(XUV) flat grating spectrometer with the pump-probe method, the angular distributions of different orders of HHG are obtained, which show distinctive behaviors for harmonics in the plateau and the cut-off regions.The ellipticity dependence of HHG is investigated by aligning the molecular axis parallel or perpendicular to the laser polarization.Our results indicate that both the highest occupied molecular orbital(HOMO) as well as the lower one(HOMO-1) contribute to the HHG of N2 molecules, in either linearly or elliptically polarized intense laser field.The study paves the way for understanding the ultrafast electron dynamics of molecules exposed to an intense laser field.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
文摘There are many appearances in the literature of reliable observations of studying so-called “jets” and “sprites” - the discharges in the gigantic natural capacitor “Ionosphere-Earth” [1]. The volume of such a discharge is approximately 5-10 thousand cubic kilometers and usually it appears above the surface of ocean. There are the cases also of above mentioned discharges on the ground. The value of the energy transferred to the earth can comprise to several terajoule. Events are accompanied by the emission of the waves of ultra-low frequency. Their study has the significant interest from many points of view. The essence of the observed irregular phenomena consists of the electromechanical conversion of the energy excesses of natural electricity into mechanical and thermal energy of cyclones, typhoons and other natural cataclysms. The ionosphere can retain only the specific quantity of energy. Otherwise, it discards the surpluses of electricity through the atmosphere or transforms them into the energy of storms, in that number and inside the Earth. By using the part of the natural electricity for useful purposes it is possible to govern the weather of planet. Causing the artificial breakdowns of the ionosphere it could be possible to arrange the discharge of the controlled aqueous sediments at the necessary points of the globe. It could be possible as well to attempt to regulate the climate of planet and to decrease the amplitudes of the magnetic storms, earthquakes and hurricanes.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303302)the National Natural Science Foundation of China(Grant Nos.61322407,11474058,and 61674040)
文摘We have carried out magneto-transport measurements for single crystal SrMnSb2. Clear Shubnikov-de Haas oscil- lations were resolved at relatively low magnetic field around 4 T, revealing a quasi-2D Fermi surface. We observed a development of quantized plateaus in Hall resistance (Rxy) at high pulsed fields up to 60 T. Due to the strong 2D confine- ment and layered properties of the samples, we interpreted the observation as bulk quantum Hall effect that is contributed by the parallel 2D conduction channels. Moreover, the spin degeneracy was lifted leading to Landau level splitting. The presence of anisotropic g factor and the formation of the oscillation beating pattern reveal a strong spin-orbit interaction in the SrMnSb2 system.