In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish...In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.展开更多
In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)...In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)))g(x′(t))=0are obtained.展开更多
By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(...By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].展开更多
This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several differen...This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li C...In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li Chun-hong.展开更多
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order...In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.展开更多
The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equa...The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.展开更多
Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the po...The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory.展开更多
In this paper, we obtained some sufficient conditions for the oscillation of all solutions of the second order neutral differential equation of the form where , and . Examples are provided to illustrate the main results.
For linear partial differential equation 〔 2t 2-a 2P( x)〕 m u=f(x,t), where m1,X∈R n,t∈R 1, the author gives the analytic solution of the initial value problem using the operators sh(tP( x) 1/2 )...For linear partial differential equation 〔 2t 2-a 2P( x)〕 m u=f(x,t), where m1,X∈R n,t∈R 1, the author gives the analytic solution of the initial value problem using the operators sh(tP( x) 1/2 )P( x) 1/2 . By representing the operators with integrals, explicit solutions are obtained with an integral form of a given function.展开更多
The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-s...The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.展开更多
The problem of periodic solutions for a kind of kth-order linear neutral functional differential equation is studied. By using the theory of Fourier expansions, a sufficient and necessary condition to guarantee the ex...The problem of periodic solutions for a kind of kth-order linear neutral functional differential equation is studied. By using the theory of Fourier expansions, a sufficient and necessary condition to guarantee the existence and uniqueness of periodic solution is obtained. Further, by applying this result and Schauder's fixed point principle, a kind of kth-order nonlinear neutral functional differential equation is investigated, and some new results on existence of the periodic solutions are given as well. These results improve and extend some known results in recent literature.展开更多
In this paper, we study the growth of solutions of higher order differential equation with meromorphic coefficients, and find some conditions which guarantee that its every nontrivial solution is of infinite order.
This paper is to obtain sufficient conditions under which the neutral functional differential equation d/dx[x(t) + integral(c)(t) x(s)d(s) mu(t, s)] + integral(c)(t) f(t, x(s))d(s) eta(t, s) = 0, t greater than or equ...This paper is to obtain sufficient conditions under which the neutral functional differential equation d/dx[x(t) + integral(c)(t) x(s)d(s) mu(t, s)] + integral(c)(t) f(t, x(s))d(s) eta(t, s) = 0, t greater than or equal to t(0) greater than or equal to c (1) has a positive solution on [c, +infinity). Some results in [1] are generalized. Then we apply our results to functional differential equations of special form and obtain sufficient conditions for those equations to have a positive solution.展开更多
we consider the third-order neutral functional differential equations with deviating arguments. A new theorem is presented that improves a number of results reported in the literature. Examples are included to illustr...we consider the third-order neutral functional differential equations with deviating arguments. A new theorem is presented that improves a number of results reported in the literature. Examples are included to illustrate new results.展开更多
文摘In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.
文摘In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)))g(x′(t))=0are obtained.
基金National Natural Science Foundation of China( 198710 0 5 )
文摘By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].
基金Supported by NSFC (11001091)Chinese UniversityResearch Foundation (2010MS129)
文摘This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
基金This work is supported by the National Natural Science Foundation of China(10161006)the Natural Science Foundation of Jiangxi Prov(001109)Korea Research Foundation Grant(KRF-2001-015-DP0015)
文摘In this paper, authors investigate the order of growth and the hyper order of solutions of a class of the higher order linear differential equation, and improve results of M. Ozawa, G. Gundersen and J.K. Langley, Li Chun-hong.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
文摘In this paper, we investigate the growth of solutions of higher order linear differential equations with meromorphic coefficients. Under certain conditions, we obtain precise estimation of growth order and hyper-order of solutions of the equation.
基金Sponsored by HUST Foundation(0125011017)the National NSFC under grant(70671047)
文摘The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
基金supported by the National Board for Higher Mathematics,Mumbai,India under Grant No.2/48(5)/2013/NBHM(R.P.)/RD-II/688 dt 16.01.2014
文摘The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory.
文摘In this paper, we obtained some sufficient conditions for the oscillation of all solutions of the second order neutral differential equation of the form where , and . Examples are provided to illustrate the main results.
文摘For linear partial differential equation 〔 2t 2-a 2P( x)〕 m u=f(x,t), where m1,X∈R n,t∈R 1, the author gives the analytic solution of the initial value problem using the operators sh(tP( x) 1/2 )P( x) 1/2 . By representing the operators with integrals, explicit solutions are obtained with an integral form of a given function.
文摘The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.
文摘The problem of periodic solutions for a kind of kth-order linear neutral functional differential equation is studied. By using the theory of Fourier expansions, a sufficient and necessary condition to guarantee the existence and uniqueness of periodic solution is obtained. Further, by applying this result and Schauder's fixed point principle, a kind of kth-order nonlinear neutral functional differential equation is investigated, and some new results on existence of the periodic solutions are given as well. These results improve and extend some known results in recent literature.
基金The NSF(11201195)of Chinathe NSF(20132BAB201008)of Jiangxi Province
文摘In this paper, we study the growth of solutions of higher order differential equation with meromorphic coefficients, and find some conditions which guarantee that its every nontrivial solution is of infinite order.
文摘This paper is to obtain sufficient conditions under which the neutral functional differential equation d/dx[x(t) + integral(c)(t) x(s)d(s) mu(t, s)] + integral(c)(t) f(t, x(s))d(s) eta(t, s) = 0, t greater than or equal to t(0) greater than or equal to c (1) has a positive solution on [c, +infinity). Some results in [1] are generalized. Then we apply our results to functional differential equations of special form and obtain sufficient conditions for those equations to have a positive solution.
文摘we consider the third-order neutral functional differential equations with deviating arguments. A new theorem is presented that improves a number of results reported in the literature. Examples are included to illustrate new results.