Cloud computing is expanding widely in the world of IT infrastructure. This is due partly to the cost-saving effect of economies of scale. Fair market conditions can in theory provide a healthy environment to reflect ...Cloud computing is expanding widely in the world of IT infrastructure. This is due partly to the cost-saving effect of economies of scale. Fair market conditions can in theory provide a healthy environment to reflect the most reasonable costs of computations. While fixed cloud pricing provides an attractive low entry barrier for compute-intensive applications, both the consumer and supplier of computing resources can see high efficiency for their investments by participating in auction-based exchanges. There are huge incentives for the cloud provider to offer auctioned resources. However, from the consumer perspective, using these resources is a sparsely discussed challenge. This paper reports a methodology and framework designed to address the challenges of using HPC (High Performance Computing) applications on auction-based cloud clusters. The authors focus on HPC applications and describe a method for determining bid-aware checkpointing intervals. They extend a theoretical model for determining checkpoint intervals using statistical analysis of pricing histories. Also the latest developments in the SpotHPC framework are introduced which aim at facilitating the managed execution of real MPI applications on auction-based cloud environments. The authors use their model to simulate a set of algorithms with different computing and communication densities. The results show the complex interactions between optimal bidding strategies and parallel applications performance.展开更多
A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designin...A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designing philosophy utilizing the similarity between hardware, software and the problems to be solved is embodied, based on the multi-scale method and discrete simulation approaches developed at Institute of Process Engineering (IPE) and implemented in a graphic processing unit (GPU)-based hybrid computing mode. The preliminary applications of this machine in areas of multi-phase flow, molecular dynamics and so on are reported, demonstrating the supercomputer as a paradigm of green computation in new architecture.展开更多
Objective:As a high computation cost discipline,nuclear science and engineering still relies heavily on traditional high performance computing(HPC)clusters.However,the usage of traditional HPC for nuclear science and ...Objective:As a high computation cost discipline,nuclear science and engineering still relies heavily on traditional high performance computing(HPC)clusters.However,the usage of traditional HPC for nuclear science and engineering has been limited due to the poor flexibility,the software compatibility and the poor user interfaces.Virtualized/virtual HPC(vHPC)can mimic an HPC by using a cloud computing platform.In this work,we designed and developed a vHPC system for employment in nuclear engineering.Methods:The system is tested using the computation of the numberπby Monte Carlo and an X-ray digital imaging system simulation.The performance of the vHPC system is compared with that of the traditional HPCs.Results:As the number of the simulated particles increases,the virtual cluster computing time grows propor-tionally.The time used for the simulation of the X-ray imaging was about 21.1 h over a 12 kernels virtual server.Experimental results show that the performance of virtual cluster computing and the actual physical machine is almost the same.Conclusions:From these tests,it is concluded that vHPC is a good alternative for employing in nuclear engineering.The proposed vHPC in this paper will make HPC flexible and easy to deploy.展开更多
针对上船院(SDARI)高性能计算平台静态调度方式在研发和设计过程中不能满足当前实际需求等问题,基于FCFS(first come first service)和Firstfit算法提出一种优化的FCFS-Fit调度算法。通过对集群进行数据采集,负载预测分析,为调度系统提...针对上船院(SDARI)高性能计算平台静态调度方式在研发和设计过程中不能满足当前实际需求等问题,基于FCFS(first come first service)和Firstfit算法提出一种优化的FCFS-Fit调度算法。通过对集群进行数据采集,负载预测分析,为调度系统提供决策依据,并在网页端开发权限管理和交互式可视化功能模块。通过该系统实现了高性能计算平台的智能调度,大大提高了集群的使用效率,提升了高性能调度的精细化管理水平,系统稳定性较好,具有一定的工程实际应用价值。展开更多
基金"This paper is an extended version of "SpotMPl: a framework for auction-based HPC computing using amazon spot instances" published in the International Symposium on Advances of Distributed Computing and Networking (ADCN 2011).Acknowledgment This research is supported in part by the National Science Foundation grant CNS 0958854 and educational resource grants from Amazon.com.
文摘Cloud computing is expanding widely in the world of IT infrastructure. This is due partly to the cost-saving effect of economies of scale. Fair market conditions can in theory provide a healthy environment to reflect the most reasonable costs of computations. While fixed cloud pricing provides an attractive low entry barrier for compute-intensive applications, both the consumer and supplier of computing resources can see high efficiency for their investments by participating in auction-based exchanges. There are huge incentives for the cloud provider to offer auctioned resources. However, from the consumer perspective, using these resources is a sparsely discussed challenge. This paper reports a methodology and framework designed to address the challenges of using HPC (High Performance Computing) applications on auction-based cloud clusters. The authors focus on HPC applications and describe a method for determining bid-aware checkpointing intervals. They extend a theoretical model for determining checkpoint intervals using statistical analysis of pricing histories. Also the latest developments in the SpotHPC framework are introduced which aim at facilitating the managed execution of real MPI applications on auction-based cloud environments. The authors use their model to simulate a set of algorithms with different computing and communication densities. The results show the complex interactions between optimal bidding strategies and parallel applications performance.
文摘A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designing philosophy utilizing the similarity between hardware, software and the problems to be solved is embodied, based on the multi-scale method and discrete simulation approaches developed at Institute of Process Engineering (IPE) and implemented in a graphic processing unit (GPU)-based hybrid computing mode. The preliminary applications of this machine in areas of multi-phase flow, molecular dynamics and so on are reported, demonstrating the supercomputer as a paradigm of green computation in new architecture.
基金supported by National Key Research and Development Program 2016YFC0105406National Natural Science Foundation of China(11575095,61571262)。
文摘Objective:As a high computation cost discipline,nuclear science and engineering still relies heavily on traditional high performance computing(HPC)clusters.However,the usage of traditional HPC for nuclear science and engineering has been limited due to the poor flexibility,the software compatibility and the poor user interfaces.Virtualized/virtual HPC(vHPC)can mimic an HPC by using a cloud computing platform.In this work,we designed and developed a vHPC system for employment in nuclear engineering.Methods:The system is tested using the computation of the numberπby Monte Carlo and an X-ray digital imaging system simulation.The performance of the vHPC system is compared with that of the traditional HPCs.Results:As the number of the simulated particles increases,the virtual cluster computing time grows propor-tionally.The time used for the simulation of the X-ray imaging was about 21.1 h over a 12 kernels virtual server.Experimental results show that the performance of virtual cluster computing and the actual physical machine is almost the same.Conclusions:From these tests,it is concluded that vHPC is a good alternative for employing in nuclear engineering.The proposed vHPC in this paper will make HPC flexible and easy to deploy.
文摘针对上船院(SDARI)高性能计算平台静态调度方式在研发和设计过程中不能满足当前实际需求等问题,基于FCFS(first come first service)和Firstfit算法提出一种优化的FCFS-Fit调度算法。通过对集群进行数据采集,负载预测分析,为调度系统提供决策依据,并在网页端开发权限管理和交互式可视化功能模块。通过该系统实现了高性能计算平台的智能调度,大大提高了集群的使用效率,提升了高性能调度的精细化管理水平,系统稳定性较好,具有一定的工程实际应用价值。