Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s...Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.展开更多
The influences of compositing mineral admixtures on the regularity of mechanical property, workability, durability and microstructure of C50 marine concrete were investigated. The results show that the incorporation o...The influences of compositing mineral admixtures on the regularity of mechanical property, workability, durability and microstructure of C50 marine concrete were investigated. The results show that the incorporation of mineral admixtures can improve the mechanical properties and workability of C50 marine concrete, 3 min-doped mineral admixture had excellent resistance to chloride ion permeability. The microscopic structure mixing mineral admixtures system was well-distributed and compact, little macroporeare can be found.展开更多
This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (...This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.展开更多
The thixotropic structural build-up is crucial in extrusion-based three-dimensional(3D)concrete printing.This paper uses a theoretical model to predict the evolution of static and dynamic yield stress for printed conc...The thixotropic structural build-up is crucial in extrusion-based three-dimensional(3D)concrete printing.This paper uses a theoretical model to predict the evolution of static and dynamic yield stress for printed concrete.The model employs a structural kinetics framework to create a time-independent constitutive link between shear stress and shear rate.The model considers flocculation,deflocculation,and chemical hydration to anticipate structural buildability.The reversible and irreversible contributions that occur throughout the build-up,breakdown,and hydration are defined based on the proposed structural parameters.Additionally,detailed parametric studies are conducted to evaluate the impact of model parameters.It is revealed that the proposed model is in good agreement with the experimental results,and it effectively characterizes the structural build-up of 3D printable concrete.展开更多
基金Funded by National Natural Science Foundation of China(Nos.U1134008 and 51302090)the Fundamental Research Funds for the Central Universities(No.2015ZJ0005)
文摘Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d.
基金Funded by the Science Foundation of the Science and Technology Department of Hubei Province (No.2004ABA100)
文摘The influences of compositing mineral admixtures on the regularity of mechanical property, workability, durability and microstructure of C50 marine concrete were investigated. The results show that the incorporation of mineral admixtures can improve the mechanical properties and workability of C50 marine concrete, 3 min-doped mineral admixture had excellent resistance to chloride ion permeability. The microscopic structure mixing mineral admixtures system was well-distributed and compact, little macroporeare can be found.
文摘This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.
基金A grant from CSIR,New Delhi,generously funds this studypartially supported by the City University of Hong Kong,China(No.9610661).
文摘The thixotropic structural build-up is crucial in extrusion-based three-dimensional(3D)concrete printing.This paper uses a theoretical model to predict the evolution of static and dynamic yield stress for printed concrete.The model employs a structural kinetics framework to create a time-independent constitutive link between shear stress and shear rate.The model considers flocculation,deflocculation,and chemical hydration to anticipate structural buildability.The reversible and irreversible contributions that occur throughout the build-up,breakdown,and hydration are defined based on the proposed structural parameters.Additionally,detailed parametric studies are conducted to evaluate the impact of model parameters.It is revealed that the proposed model is in good agreement with the experimental results,and it effectively characterizes the structural build-up of 3D printable concrete.