期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Phosphorus Removal of High Phosphorus Iron Ore by Gas-Based Reduction and Melt Separation 被引量:27
1
作者 TANG Hui-qing GUO Zhan-cheng ZHAO Zhi-long 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2010年第9期1-6,共6页
A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry packag... A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry package and the coexistence theory of slag structure were adopted for theoretical analysis. The gas-based reduction was carried out using a fixed bed reactor and the ore sample of 80 g with an average particle size of 2 mm were reduced using CO or H2 at temperature of 1 073 K for 5 hours. 50 g of the reduced sample with 3.0% CaO as additive was then subjected to melt separation in an electric furnace at temperature of 1 873 K under Ar atmosphere. In each run, SEM, EDS, optical microscopic examination and chemical analysis of the reduced ore sample, the metal sample and the slag sample were conducted. Results of all gas-based reduction experiments showed that iron metallization ratios were some 65% and the phosphorus compounds in the ore remained unchanged. It was agreed well with the simula- tions except for the iron metallization rate being less than predicted value; this difference was attributed to kinetics. Results of melt separation experiments showed that P content in metal samples is 0.33% (metal sample from H2 reduction product) and 0.27% (metal sample from CO reduction product). The phosphorus partition ratios of both cases were less than predicted values. Some P in the metal samples existed as slag inclusion was considered to be the reason for this discrepancy. 展开更多
关键词 HSC chemistry package coexistence theory slag structure high phosphorus iron ore gas-based reduction melt separation
原文传递
Intensifying Gaseous Reduction of High Phosphorus Iron Ore Fines by Microwave Pretreatment 被引量:4
2
作者 TANG Hui-qing WANG Jun-wei +1 位作者 GUO Zhan-cheng OU Tie 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2013年第5期17-23,共7页
Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by... Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by TG (Thermogravimetric) methods using LINSEIS STA PT 1600 thermal analysis equipment. Microwave pretreatments to the ore fines with four power levels were performed using a high temperature microwave reactor. Its effect was examined by TG methods and its mechanism was analyzed by SEM (scanning electron microscope) and EDS (energy dispersive spectrometer). Gaseous reduction tests were carried out using a tubular furnace. Results of kinetic study indicate that controlling step of the gaseous reduction of the ore fines is a mixing control of gas internal diffusion and interface chemical reaction when reduction fraction is less than 0.8 and is solid state diffusion when reduction fraction is more than 0.8. Microwave pretreatment of the ore fines could change the pore structure of the oolitic unit to generate cracks, fissures and loose zones, which promotes reduction in the early stage and delays the occurrence of sintering. Gaseous reduction tests show in the condition that the ore fines are pretreated with a microwave power of 450 W for 4 min and reduced under temperature of 1 273 K, the gaseous reduction of the ore fines could be apparently intensified. Using CO or H2 as a reductant and ore fines being reduced for 1.5 to 2 h , increase of metallization rate of the ore fines is 10% to 13%. 展开更多
关键词 high phosphorus iron ore fine gaseous reduction kinetics microwave pretreatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部