In the development of the Gravity-1 launch vehicle, solid rocket motors without a thrust termination mechanism created great challenges for ascent guidance. To resolve this problem, the Gravity-1 GNC system used cross...In the development of the Gravity-1 launch vehicle, solid rocket motors without a thrust termination mechanism created great challenges for ascent guidance. To resolve this problem, the Gravity-1 GNC system used cross product guidance in the core 2nd stage, and a nonlinear adaptive guidance algorithm in core 3rd stage, in order to achieve high orbit injection precision. On January 11, 2024, the Gravity-1 launch vehicle successfully carried out its maiden flight from a mobile sea platform off the coast of Haiyang in Shandong province, inserting its payload into a low earth orbit at an altitude of 500 kilometers, validating the guidance algorithm.展开更多
In order to improve the reliability of the spacecraft micro cold gas propulsion system and realize the precise control of the spacecraft attitude and orbit, a micro-thrust, high-precision cold gas thruster is carried ...In order to improve the reliability of the spacecraft micro cold gas propulsion system and realize the precise control of the spacecraft attitude and orbit, a micro-thrust, high-precision cold gas thruster is carried out, at the same time due to the design requirements of the spacecraft, this micro-thrust should be continuous working more than 60 minutes, the traditional solenoid valve used for the thrusts can’t complete the mission, so a long-life micro latching valve is developed as the control valve for this micro thruster, because the micro latching valve can keep its position when it cuts off the outage. Firstly, the authors introduced the design scheme and idea of the thruster. Secondly, the performance of the latching valve and the flow characteristics of the nozzle were simulated. Finally, from the experimental results and compared with the numerical study, it shows that the long-life micro cold gas thruster developed in this paper meets the mission requirements.展开更多
This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep ...This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.展开更多
Three-dimensional(3D)printing technology is expected to solve the organ shortage problem.However,owing to the accuracy limitations,it is difficult for the current bioprinting technology to achieve an accurate control ...Three-dimensional(3D)printing technology is expected to solve the organ shortage problem.However,owing to the accuracy limitations,it is difficult for the current bioprinting technology to achieve an accurate control of the spatial position and distribution of a single cell or single component droplet.In this study,to accurately achieve the directional deposition of different cells and biological materials in the spatial position for the construction of large transplantable tissues and organs,a high-precision multichannel 3D bioprinter with submicron-level motion accuracy is designed,and concurrent and synergistic printing methods are proposed.Based on the high-precision motion characteristics of the gantry structure and the requirements of concurrent and synergistic printing,a 3D bioprint-ing system with a set of 6 channels is designed to achieve six-in-one printing.Based on the Visual C++environ-ment,a control system software that integrates the programmable multi-axis controller(PMAC)motion,pneumatic,and temperature control subsystems was developed and designed.Finally,based on measurements and experiments,the 3D bioprinter and its control system was verified to fulfil the requirements of multichannel,concurrent,and syn-ergistic printing with submicron-level motion accuracy,significantly shortening the printing time and improving the printing efficiency.This study not only provides an equipment basis for printing complex heterogeneous tissue structures,but also improves the flexibility and functionality of bioprinting,and ultimately makes the construction of complex multicellular tissues or organs possible.展开更多
Two adaptive friction compensation schemes are developed for a high precision turntable system with nonlinear dynamic friction to handle two types of parametric uncertainties in the friction. Both schemes utilize a no...Two adaptive friction compensation schemes are developed for a high precision turntable system with nonlinear dynamic friction to handle two types of parametric uncertainties in the friction. Both schemes utilize a nonlinear observer/filter structure to compensate for uncertainties in corresponding friction parameters associated with the turntable system. Moreover, in the second scheme, adjustable gains are introduced into the dual nonlin- ear filters and they can be tuned to improve the position tracking performance. In both cases, a Lyapunov-like argument is provided for the global asymptotic stability of the closed-loop system. Simulation results demonstrate the effectiveness of the proposed schemes.展开更多
Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The r...Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.展开更多
This paper presents a high precision CMOS opamp suitable for ISFET readout. The opamp is tailored to provide a constant bias condition for ISFET as part of the readout circuits and,hence,is compatible for single chip ...This paper presents a high precision CMOS opamp suitable for ISFET readout. The opamp is tailored to provide a constant bias condition for ISFET as part of the readout circuits and,hence,is compatible for single chip integration with the sensor. A continuous time auto-zero stabilization technique is studied and employed, with the aim of suppressing the low frequency noises, including the offset voltage, 1/f noise, and temperature drift. The design is based on a 0.35μm CMOS process. With a 3.3V power supply,it maintains a DC open loop gain of more than 100dB and an offset voltage of around 11μV,while the overall power dissipation is only 1.48mW. With this opamp, a pH microsensor is constructed, of which the functionality is verified by experimental tests.展开更多
Unmanned aerial vehicles(UAVs)may be subjected to unintentional radio frequency interference(RFI)or hostile jamming attack which will lead to fail to track global navigation satellite system(GNSS)signals.Therefore,the...Unmanned aerial vehicles(UAVs)may be subjected to unintentional radio frequency interference(RFI)or hostile jamming attack which will lead to fail to track global navigation satellite system(GNSS)signals.Therefore,the simultaneous realization of anti-jamming and high-precision carrier phase difference positioning becomes a dilemmatic problem.In this paper,a distortionless phase digital beamforming(DBF)algorithm with self-calibration antenna arrays is proposed,which enables to obtain distortionless carrier phase while suppressing jamming.Additionally,architecture of high precision Beidou receiver based on anti-jamming antenna arrays is proposed.Finally,the performance of the algorithm is evaluated,including antenna calibration accuracy,carrier phase distortionless accuracy,and carrier phase measurement accuracy without jamming.Meanwhile,the maximal jamming to signal ratio(JSR)and real time kinematic(RTK)positioning accuracy under wideband jamming are also investigated.The experimental results based on the real-life Beidou signals show that the proposed method has an excellent performance for precise relative positioning under jamming when compared with other anti-jamming methods.展开更多
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co...The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.展开更多
The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabri...The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabrication of safe and high‐energy MXene MSCs for integrating microelectronics remains a significant challenge due to the low voltage window in aqueous electrolytes(typically≤0.6 V)and limited areal mass loading of MXene microelectrodes.Here,we tackle these challenges by developing a highconcentration(18mol kg^(−1))“water‐in‐LiBr”(WiB)gel electrolyte for MXene symmetric MSCs(M‐SMSCs),demonstrating a record high voltage window of 1.8 V.Subsequently,additive‐free aqueous MXene ink with excellent rheological behavior is developed for three‐dimensional(3D)printing customizable all‐MXene microelectrodes on various substrates.Leveraging the synergy of a highvoltage WiB gel electrolyte and 3D‐printed microelectrodes,quasi‐solid‐state MSMSCs operating stably at 1.8 V are constructed,and achieve an ultrahigh areal energy density of 1772μWhcm^(−2) and excellent low‐temperature tolerance,with a long‐term operation at−40℃.Finally,by extending the 3D printing protocol,M‐SMSCs are integrated with humidity sensors on a single planar substrate,demonstrating their reliability in miniaturized integrated microsystems.展开更多
Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,lim...Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.展开更多
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ...High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.展开更多
In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means t...In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.展开更多
This paper introduces a real-time high precision measurement of phase difference based on Field Programmable Gate Array(FPGA) technology,which has been successfully applied to laser grating interference measurement ...This paper introduces a real-time high precision measurement of phase difference based on Field Programmable Gate Array(FPGA) technology,which has been successfully applied to laser grating interference measurement and real-time feedback of plasma electron density in HL-2A tokamak.It can track the changes of electron density while setting the starting point of the density curve to zero.In a laboratory test,the measuring accuracy of phase difference is less than 0.1°,the time resolution is 80 ns,and the feedback delay is 180 μs.展开更多
In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from th...In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from the completely square-conservative difference scheme in explicit way is built by means of the Taylor expansion. A numerical test with 4-wave Rossby-Haurwitz waves on them and an application of them on the monthly mean current the of South China Sea are carried out, from which, it is found that not only do the new schemes have high harmony and approximate precision but also can the time step of the schemes be lengthened and can much computational time be saved. Therefore, they are worth generalizing and applying.展开更多
The loess plateau is featured by a sharply undulated and remarkably incised surface. The sharp surface undulation means great variation of loess thickness. Since the loess layer exhibits significant density contrast w...The loess plateau is featured by a sharply undulated and remarkably incised surface. The sharp surface undulation means great variation of loess thickness. Since the loess layer exhibits significant density contrast with the underlying formation, a high frequency gravity anomaly with a certain magnitude will appear. The high frequency gravity anomaly can result in some difficulties for processing and interpreting the gravity data, thereby reducing the usefulness of gravity surveys in loess plateau areas. We carried out a high precision gravity survey in the SHJZ structural zone. During data processing, we applied terrain and loess corrections to effectively remove or suppress the gravity effect resulting from surface undulation and variation of loess thickness. We obtained high precision gravity data which matches well with other geophysical data. The comprehensive interpretation based on the final gravity data help to study local structure integrated with other published geophysical data.展开更多
The downward continuation of potential fields is a process of calculating their values in a lower plane based on those of a certain plane.This technology is not only a data processing method for resource exploration b...The downward continuation of potential fields is a process of calculating their values in a lower plane based on those of a certain plane.This technology is not only a data processing method for resource exploration but also plays an extremely important role in military applications.However,the downward continuation of potential fields is a typical linear inverse problem that is ill-posed.Generalized minimal residuals(GMRES)is an eff ective solution to ill-posed inverse problems,but it is unstable under the condition wherein the GMRES is directly applied in the calculation process.Moreover,the long-term behavior of its iterative computation is a disordered,divergent result.Therefore,to obtain stable solutions,GMRES is applied to solve the normal equations of the downward continuation of potential fields;it is also used to prequalify for occasional interruptions in the operation process by adding the damping coefficient,thus strengthening the stability conditions of the equations of residual minimization.Finally,the stable downward continuation of the potential fields method is proposed.As indicated by the theoretical data and the measured testing data,the method proposed in this paper has the advantages of high-precision and excellent stability.Furthermore,compared with the Tikhonov iteration method,the proposed method avoids the need to choose regularization parameters.展开更多
Earth sensors are widely used in spacecraft for attitude determination. They need to have a very large field of view(FOV)( > 120°) and relatively low accuracy while being used in the aircrafts around orbit. A ...Earth sensors are widely used in spacecraft for attitude determination. They need to have a very large field of view(FOV)( > 120°) and relatively low accuracy while being used in the aircrafts around orbit. A triple-FOV infrared earth sensor is proposed in this paper. It uses three pieces of standard infrared detectors with a wavelength range of 14;16μm,to sense the horizontal circle by detecting the infrared light emitted from the earth. From which,the geocentric vector can be obtained. A mathematic model is established and a validation model is set up to provide input parameters for the mathematic model. The simulation results of the two models show that the output of the mathematic model coincides with the known parameters. Based on the above analysis,a prototype has been built and tested. The test results show that the angle measurement error is about 0. 002° and hence such a triple-FOV earth sensor is capable to provide high-precision position information for autonomous navigation.展开更多
In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points...In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.展开更多
A generalized simulation method of the tracking,telemetry and control(TT&C) channel,which is applicable to wideband and arbitrary radio frequency(RF) signal,is proposed.It can accurately simulate the dynamic tran...A generalized simulation method of the tracking,telemetry and control(TT&C) channel,which is applicable to wideband and arbitrary radio frequency(RF) signal,is proposed.It can accurately simulate the dynamic transmission delay of the arbitrary RF signal in channels,especially regardless of any prior knowledge including signal form,signal parameters,and so on.The proposed method orthogonally demodulates the wideband and arbitrary RF signal to complex baseband by a known local oscillator(LO) signal.Whereafter,it takes measures to obtain the delay reconstruction signal of baseband signals based on the dynamic transmission delay between a ground station and a responder.Meanwhile,it manages to obtain the delay reconstruction signal of LO signals.The simulation output signal(the delayed RF signal) can be achieved through the synthesis of the two delay reconstruction signals mentioned above.The principle and its related key technology are described in detail,and the realizable system architecture is given.展开更多
文摘In the development of the Gravity-1 launch vehicle, solid rocket motors without a thrust termination mechanism created great challenges for ascent guidance. To resolve this problem, the Gravity-1 GNC system used cross product guidance in the core 2nd stage, and a nonlinear adaptive guidance algorithm in core 3rd stage, in order to achieve high orbit injection precision. On January 11, 2024, the Gravity-1 launch vehicle successfully carried out its maiden flight from a mobile sea platform off the coast of Haiyang in Shandong province, inserting its payload into a low earth orbit at an altitude of 500 kilometers, validating the guidance algorithm.
文摘In order to improve the reliability of the spacecraft micro cold gas propulsion system and realize the precise control of the spacecraft attitude and orbit, a micro-thrust, high-precision cold gas thruster is carried out, at the same time due to the design requirements of the spacecraft, this micro-thrust should be continuous working more than 60 minutes, the traditional solenoid valve used for the thrusts can’t complete the mission, so a long-life micro latching valve is developed as the control valve for this micro thruster, because the micro latching valve can keep its position when it cuts off the outage. Firstly, the authors introduced the design scheme and idea of the thruster. Secondly, the performance of the latching valve and the flow characteristics of the nozzle were simulated. Finally, from the experimental results and compared with the numerical study, it shows that the long-life micro cold gas thruster developed in this paper meets the mission requirements.
基金Sponsored by the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023IISL0098)the Hefei Municipal Natural Science Foundation(Grant No.202201)+1 种基金the National Natural Science Foundation of China(Grant No.62071164)the Open Fund of Information Materials and Intelligent Sensing Laboratory of Anhui Province(Anhui University)(Grant No.IMIS202214 and IMIS202102)。
文摘This article proposes a VGG network with histogram of oriented gradient(HOG) feature fusion(HOG-VGG) for polarization synthetic aperture radar(PolSAR) image terrain classification.VGG-Net has a strong ability of deep feature extraction,which can fully extract the global deep features of different terrains in PolSAR images,so it is widely used in PolSAR terrain classification.However,VGG-Net ignores the local edge & shape features,resulting in incomplete feature representation of the PolSAR terrains,as a consequence,the terrain classification accuracy is not promising.In fact,edge and shape features play an important role in PolSAR terrain classification.To solve this problem,a new VGG network with HOG feature fusion was specifically proposed for high-precision PolSAR terrain classification.HOG-VGG extracts both the global deep semantic features and the local edge & shape features of the PolSAR terrains,so the terrain feature representation completeness is greatly elevated.Moreover,HOG-VGG optimally fuses the global deep features and the local edge & shape features to achieve the best classification results.The superiority of HOG-VGG is verified on the Flevoland,San Francisco and Oberpfaffenhofen datasets.Experiments show that the proposed HOG-VGG achieves much better PolSAR terrain classification performance,with overall accuracies of 97.54%,94.63%,and 96.07%,respectively.
基金Supported by National Key Research and Development Program of China(Grant No.2018YFA0703000)National Natural Science Foundation of China(Grant No.51875518)Fundamental Research Funds for the Central Universities of China(Grant Nos.2019XZZX003-02,2019FZA4002).
文摘Three-dimensional(3D)printing technology is expected to solve the organ shortage problem.However,owing to the accuracy limitations,it is difficult for the current bioprinting technology to achieve an accurate control of the spatial position and distribution of a single cell or single component droplet.In this study,to accurately achieve the directional deposition of different cells and biological materials in the spatial position for the construction of large transplantable tissues and organs,a high-precision multichannel 3D bioprinter with submicron-level motion accuracy is designed,and concurrent and synergistic printing methods are proposed.Based on the high-precision motion characteristics of the gantry structure and the requirements of concurrent and synergistic printing,a 3D bioprint-ing system with a set of 6 channels is designed to achieve six-in-one printing.Based on the Visual C++environ-ment,a control system software that integrates the programmable multi-axis controller(PMAC)motion,pneumatic,and temperature control subsystems was developed and designed.Finally,based on measurements and experiments,the 3D bioprinter and its control system was verified to fulfil the requirements of multichannel,concurrent,and syn-ergistic printing with submicron-level motion accuracy,significantly shortening the printing time and improving the printing efficiency.This study not only provides an equipment basis for printing complex heterogeneous tissue structures,but also improves the flexibility and functionality of bioprinting,and ultimately makes the construction of complex multicellular tissues or organs possible.
文摘Two adaptive friction compensation schemes are developed for a high precision turntable system with nonlinear dynamic friction to handle two types of parametric uncertainties in the friction. Both schemes utilize a nonlinear observer/filter structure to compensate for uncertainties in corresponding friction parameters associated with the turntable system. Moreover, in the second scheme, adjustable gains are introduced into the dual nonlin- ear filters and they can be tuned to improve the position tracking performance. In both cases, a Lyapunov-like argument is provided for the global asymptotic stability of the closed-loop system. Simulation results demonstrate the effectiveness of the proposed schemes.
文摘Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.
文摘This paper presents a high precision CMOS opamp suitable for ISFET readout. The opamp is tailored to provide a constant bias condition for ISFET as part of the readout circuits and,hence,is compatible for single chip integration with the sensor. A continuous time auto-zero stabilization technique is studied and employed, with the aim of suppressing the low frequency noises, including the offset voltage, 1/f noise, and temperature drift. The design is based on a 0.35μm CMOS process. With a 3.3V power supply,it maintains a DC open loop gain of more than 100dB and an offset voltage of around 11μV,while the overall power dissipation is only 1.48mW. With this opamp, a pH microsensor is constructed, of which the functionality is verified by experimental tests.
基金supported by the Key Research and Development Program of Science&Technology Department of Sichuan Province(2021YFG0155)the Technical Innovation Fund of Southwest China Institute of Electronic Technology(H21004.2).
文摘Unmanned aerial vehicles(UAVs)may be subjected to unintentional radio frequency interference(RFI)or hostile jamming attack which will lead to fail to track global navigation satellite system(GNSS)signals.Therefore,the simultaneous realization of anti-jamming and high-precision carrier phase difference positioning becomes a dilemmatic problem.In this paper,a distortionless phase digital beamforming(DBF)algorithm with self-calibration antenna arrays is proposed,which enables to obtain distortionless carrier phase while suppressing jamming.Additionally,architecture of high precision Beidou receiver based on anti-jamming antenna arrays is proposed.Finally,the performance of the algorithm is evaluated,including antenna calibration accuracy,carrier phase distortionless accuracy,and carrier phase measurement accuracy without jamming.Meanwhile,the maximal jamming to signal ratio(JSR)and real time kinematic(RTK)positioning accuracy under wideband jamming are also investigated.The experimental results based on the real-life Beidou signals show that the proposed method has an excellent performance for precise relative positioning under jamming when compared with other anti-jamming methods.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.52373047,No.52302106)the Sichuan Youth Science and Technology Innovation Research Team Project(No.2022JDTD0012)+2 种基金the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0418)the Program for State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-10)。
文摘The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.
基金National Natural Science Foundation of China,Grant/Award Numbers:22005297,22125903,51872283,22209175,22209176National Key Research and Development Program of China,Grant/Award Number:2022YFA1504100+8 种基金Support Program for Excellent Young Talents in Universities of Anhui Province,Grant/Award Number:2022AH030134Anhui Province Higher Education Innovation Team:Key Technologies and Equipment Innovation Team for Clean Energy,Grant/Award Number:2023AH010055Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDB36030200Dalian Innovation Support Plan for High Level Talents,Grant/Award Number:2019RT09Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS,Grant/Award Numbers:DNL202016,DNL202019,DNL202003DICP,Grant/Award Number:DICP I2020032Doctor Research Startup Foundation of Suzhou University,Grant/Award Number:2023BSK015China Postdoctoral Science Foundation,Grant/Award Numbers:2020M680995,2021M693127International Postdoctoral Exchange Fellowship Program,Grant/Award Number:YJ20210311。
文摘The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabrication of safe and high‐energy MXene MSCs for integrating microelectronics remains a significant challenge due to the low voltage window in aqueous electrolytes(typically≤0.6 V)and limited areal mass loading of MXene microelectrodes.Here,we tackle these challenges by developing a highconcentration(18mol kg^(−1))“water‐in‐LiBr”(WiB)gel electrolyte for MXene symmetric MSCs(M‐SMSCs),demonstrating a record high voltage window of 1.8 V.Subsequently,additive‐free aqueous MXene ink with excellent rheological behavior is developed for three‐dimensional(3D)printing customizable all‐MXene microelectrodes on various substrates.Leveraging the synergy of a highvoltage WiB gel electrolyte and 3D‐printed microelectrodes,quasi‐solid‐state MSMSCs operating stably at 1.8 V are constructed,and achieve an ultrahigh areal energy density of 1772μWhcm^(−2) and excellent low‐temperature tolerance,with a long‐term operation at−40℃.Finally,by extending the 3D printing protocol,M‐SMSCs are integrated with humidity sensors on a single planar substrate,demonstrating their reliability in miniaturized integrated microsystems.
基金support provided by the Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(HZQB-KCZYB-2020030)the Research Grants Council of Hong Kong(Project No:AoE/M-402/20.)+1 种基金the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050248)the Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.
文摘Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications.
基金supported by the National Natural Science Foundation of China(Nos.51839009 and 52027814)the Natural Science Foundation of Hubei Province(No.2023AFB589).
文摘High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.
基金supported by the National Key Technology R&D Program (Grant 2011BAJ02B01-02)the National Natural Science Foundation of China (Grant 11602065)
文摘In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
基金supported by National Natural Science Foundation of China(Nos.11375195,11075048)the National Magnetic Confinement Fusion Science Program of China(No.2013GB104003)
文摘This paper introduces a real-time high precision measurement of phase difference based on Field Programmable Gate Array(FPGA) technology,which has been successfully applied to laser grating interference measurement and real-time feedback of plasma electron density in HL-2A tokamak.It can track the changes of electron density while setting the starting point of the density curve to zero.In a laboratory test,the measuring accuracy of phase difference is less than 0.1°,the time resolution is 80 ns,and the feedback delay is 180 μs.
文摘In order to meet the needs of work in numerical weather forecast and in numerical simulations for climate change and ocean current, a kind of difference scheme in high precision in the time direction developed from the completely square-conservative difference scheme in explicit way is built by means of the Taylor expansion. A numerical test with 4-wave Rossby-Haurwitz waves on them and an application of them on the monthly mean current the of South China Sea are carried out, from which, it is found that not only do the new schemes have high harmony and approximate precision but also can the time step of the schemes be lengthened and can much computational time be saved. Therefore, they are worth generalizing and applying.
文摘The loess plateau is featured by a sharply undulated and remarkably incised surface. The sharp surface undulation means great variation of loess thickness. Since the loess layer exhibits significant density contrast with the underlying formation, a high frequency gravity anomaly with a certain magnitude will appear. The high frequency gravity anomaly can result in some difficulties for processing and interpreting the gravity data, thereby reducing the usefulness of gravity surveys in loess plateau areas. We carried out a high precision gravity survey in the SHJZ structural zone. During data processing, we applied terrain and loess corrections to effectively remove or suppress the gravity effect resulting from surface undulation and variation of loess thickness. We obtained high precision gravity data which matches well with other geophysical data. The comprehensive interpretation based on the final gravity data help to study local structure integrated with other published geophysical data.
基金This research is supported by the National Key Research and Development Program of China under Grant No.2018YFC1505401the Key Research and Development Projects of the Sichuan Science and Technology Department under Grant Nos.2019YFG0460,2020YFG0303,and 2021YJ0031+1 种基金the Technology Research and Development Program of China Railway Group Limited under Grant No.CZ01-Key Point-05the Fundamental Research Funds for the Central Universities under Grant No.2682021GF019.
文摘The downward continuation of potential fields is a process of calculating their values in a lower plane based on those of a certain plane.This technology is not only a data processing method for resource exploration but also plays an extremely important role in military applications.However,the downward continuation of potential fields is a typical linear inverse problem that is ill-posed.Generalized minimal residuals(GMRES)is an eff ective solution to ill-posed inverse problems,but it is unstable under the condition wherein the GMRES is directly applied in the calculation process.Moreover,the long-term behavior of its iterative computation is a disordered,divergent result.Therefore,to obtain stable solutions,GMRES is applied to solve the normal equations of the downward continuation of potential fields;it is also used to prequalify for occasional interruptions in the operation process by adding the damping coefficient,thus strengthening the stability conditions of the equations of residual minimization.Finally,the stable downward continuation of the potential fields method is proposed.As indicated by the theoretical data and the measured testing data,the method proposed in this paper has the advantages of high-precision and excellent stability.Furthermore,compared with the Tikhonov iteration method,the proposed method avoids the need to choose regularization parameters.
基金financially supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA121503 and No.2012AA120603)the National Natural Science Foundation of China(No.61377012)the Tsinghua University Initiative Scientific Research Program(No.20131089242)。
文摘Earth sensors are widely used in spacecraft for attitude determination. They need to have a very large field of view(FOV)( > 120°) and relatively low accuracy while being used in the aircrafts around orbit. A triple-FOV infrared earth sensor is proposed in this paper. It uses three pieces of standard infrared detectors with a wavelength range of 14;16μm,to sense the horizontal circle by detecting the infrared light emitted from the earth. From which,the geocentric vector can be obtained. A mathematic model is established and a validation model is set up to provide input parameters for the mathematic model. The simulation results of the two models show that the output of the mathematic model coincides with the known parameters. Based on the above analysis,a prototype has been built and tested. The test results show that the angle measurement error is about 0. 002° and hence such a triple-FOV earth sensor is capable to provide high-precision position information for autonomous navigation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11773060,11973074,U1831137 and 11703070)National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.
基金supported by the Foundation of Shanghai Aerospace Science and Technology(20120541088)
文摘A generalized simulation method of the tracking,telemetry and control(TT&C) channel,which is applicable to wideband and arbitrary radio frequency(RF) signal,is proposed.It can accurately simulate the dynamic transmission delay of the arbitrary RF signal in channels,especially regardless of any prior knowledge including signal form,signal parameters,and so on.The proposed method orthogonally demodulates the wideband and arbitrary RF signal to complex baseband by a known local oscillator(LO) signal.Whereafter,it takes measures to obtain the delay reconstruction signal of baseband signals based on the dynamic transmission delay between a ground station and a responder.Meanwhile,it manages to obtain the delay reconstruction signal of LO signals.The simulation output signal(the delayed RF signal) can be achieved through the synthesis of the two delay reconstruction signals mentioned above.The principle and its related key technology are described in detail,and the realizable system architecture is given.