期刊文献+
共找到784篇文章
< 1 2 40 >
每页显示 20 50 100
Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments
1
作者 Ruike Zhang Ruiang Guo +3 位作者 Qian Li Shuaiqi Li Haidong Long Duanwei He 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期450-457,共8页
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi... Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance. 展开更多
关键词 hexagonal boron nitride phase diagram high temperature and high pressure cubic boron nitride phase transition differential thermal analysis
下载PDF
First-principles study of structural and electronic properties of multiferroic oxide Mn_(3)TeO_(6) under high pressure
2
作者 潘小龙 王豪 +2 位作者 柳雷 陈向荣 耿华运 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期448-454,共7页
Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically ... Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically investigate the magnetism,structural phase transition,and electronic properties of MTO under high pressure through first-principles calculations.Both R3 and P2_(1)/n phases of MTO are antiferromagnetic at zero temperature.The R3 phase transforms to the P2_(1)/n phase at 7.5 8 GPa,accompanied by a considerable volume collapse of about 6.47%.Employing the accurate method that combines DFT+U/and GW,the calculated band gap of R3 phase at zero pressure is very close to the experimental values,while that of the P2_(1)/n phase is significantly overestimated.The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the P2_(1)/n phase instead of the Kubelka-Munk plot for the direct band gap.Furthermore,our study reveals that the transition from the R3 phase to the P2_(1)/n phase is accompanied by a slight reduction in the band gap. 展开更多
关键词 MAGNETISM phase transition band gap high pressure
下载PDF
Ultrafast dynamics in photo-excited Mott insulator Sr_(3)Ir_(2)O_7 at high pressure
3
作者 尹霞 张建波 +6 位作者 王东 Takeshi Nakagawa 夏春生 张曹顺 郭伟程 昌峻 丁阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期149-155,共7页
High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for ... High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators. 展开更多
关键词 ultrafast dynamics high pressure phase transition Mott insulator
下载PDF
Pressure-induced structural,electronic,and superconducting phase transitions in TaSe_(3)
4
作者 Yuhang Li Pei Zhou +3 位作者 Chi Ding Qing Lu Xiaomeng Wang Jian Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期88-94,共7页
TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations... TaSe_(3)has garnered significant research interests due to its unique quasi-one-dimensional crystal structure,which gives rise to distinctive properties.Using crystal structure search and first-principles calculations,we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe_(3)up to 100 GPa.In addition to the ambient pressure phase(P2_(1)/m-I),we identified three high-pressure phases:P2_(1)/m-II,Pnma,and Pmma.For the P2_(1)/m-I phase,the inclusion of spin-orbit coupling(SOC)results in significant SOC splitting and changes in the band inversion characteristics.Furthermore,band structure calculations for the three high-pressure phases indicate metallic natures,and the electron localization function suggests ionic bonding between Ta and Se atoms.Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa.This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe_(3). 展开更多
关键词 high pressure transition metal trichalcogenides phase transition SUPERCONDUCTIVITY
下载PDF
Influence of high pressure and manganese addition on Fe-rich phases and mechanical properties of hypereutectic Al-Si alloy with rheo-squeeze casting 被引量:12
5
作者 Chong LIN Shu-sen WU +2 位作者 Shu-lin Lü He-bao WU Han-xin CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第2期253-262,共10页
The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultra... The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultrasonic vibration(UV)firstly,and then formed by squeeze casting(SC).Results show that the FRPs in as-cast SC alloys are composed of coarseβ-Al5(Fe,Mn)Si,δ-Al4(Fe,Mn)Si2 and bone-shapedα-Al15(Fe,Mn)3Si2 phases when the pressure is 0 MPa.With RSC process,the FRPs are first refined by UV,and then the solidification under pressure further causes the grains to become smaller.The peritectic transformation occurs during the formation ofαphase.For the alloy with the same composition,the ultimate tensile strength(UTS)of RSC sample is higher than that of the SC sample.With the same forming process,the UTS of Al-14Si-2Fe-0.8Mn alloy is higher than that of Al-14Si-2Fe-0.4Mn alloy. 展开更多
关键词 high pressure MANGANESE rheo-squeeze casting hypereutectic Al-Si alloy Fe-rich phases mechanical properties
下载PDF
Effects of high-pressure rheo-squeeze casting on the Fe-rich phases and mechanical properties of Al-17Si-(1,1.5)Fe alloys 被引量:3
6
作者 Chong Lin Shu-sen Wu +2 位作者 Shu-lin Lü Ping An He-bao Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第9期1018-1026,共9页
The effects of high pressure rheo-squeeze casting(HPRC) on the Fe-rich phases(FRPs) and mechanical properties of Al-17 Si-(1,1.5)Fe alloys were investigated. The alloy melts were first treated by ultrasonic vibration(... The effects of high pressure rheo-squeeze casting(HPRC) on the Fe-rich phases(FRPs) and mechanical properties of Al-17 Si-(1,1.5)Fe alloys were investigated. The alloy melts were first treated by ultrasonic vibration(UV) and then formed by high-pressure squeeze casting(HPSC). The FRPs in the as-cast HPSC Al-17 Si-1 Fe alloys only contained a long, needle-shaped β-Al5 Fe Si phase at 0 MPa. In addition to the β-Al5 Fe Si phase, the HPSC Al-17 Si-1.5 Fe alloy also contained the plate-shaped δ-Al4 Fe Si2 phase. A fine, block-shaped δ-Al4 Fe Si2 phase was formed in the Al-17 Si-1 Fe alloy treated by UV. The size of FRPs decreased with increasing pressure. After UV treatment, solidification under pressure led to further refinement of the FRPs. Considering alloy samples of the same composition, the ultimate tensile strength(UTS) of the HPRC samples was higher than that of the HPSC samples, and the UTS increased with increasing pressure. The UTS of the Al-17 Si-1 Fe alloy formed by HPSC exceeded that of the Al-17 Si-1.5 Fe alloy formed in the same manner under the same pressure. Conversely, the UTS of the Al-17 Si-1 Fe alloy formed by HPRC decreased to a value lower than that of the Al-17 Si-1.5 Fe alloy formed in the same manner. 展开更多
关键词 high pressure rheo-squeeze CASTING Al-17Si-(1 1.5)Fe alloys Fe-rich phaseS MECHANICAL properties
下载PDF
Non-equilibrium microstructure and the metastable phase of Al-9.6wt%Mg Alloy solidification under high pressure 被引量:2
7
作者 WEI Zunjie,WANG Zhenling,WANG Hongwei,ZHU Zhaojun,CAO Lei,and LI Zhiwei School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期231-236,共6页
The non-equilibrium microstructure and a new metastable phase of Al-9.6wt%Mg alloy solidified at 6 GPa were studied by optical microscope,differential scanning calorimetry,X-ray diffraction and transmission electron m... The non-equilibrium microstructure and a new metastable phase of Al-9.6wt%Mg alloy solidified at 6 GPa were studied by optical microscope,differential scanning calorimetry,X-ray diffraction and transmission electron microscope.The results showed that dendrite microstructure was refined,and the solid solubility of Mg in α-Al phase increased greatly.Correspondingly,the lattice parameter of α-Al phase increased.Al3Mg2 phases disappeared under high pressure solidification.In particular,a metastable phase with small size(20 nm or so) was produced in the alloy,its melting temperature range was 464~518.2 ℃,which was higher than that of Al3Mg2 phase(453~465 ℃) under normal pressure.These metastable phases located in the interdendritic position.It was the first time that the metastable phase was found in Al-Mg alloy at a high pressure of 6 GPa.The formation mechanism of the metastable phases was discussed. 展开更多
关键词 high pressure solidification MICROSTRUCTURE metastable phase Al-9.6wt%Mg alloy
下载PDF
Effects of grinding-induced grain boundary and interfaces on electrical transportation and structure phase transition in ZnSe under high pressure 被引量:1
8
作者 杨洁 汪沛 +3 位作者 张国召 周晓雪 李静 刘才龙 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期366-370,共5页
Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alterna... Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two Zn Se samples with different sizes obtained by physical grinding.The results show that(i) two different-sized Zn Se samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase;(ii) the structural transition pressure of the859-nm Zn Se sample is higher than that of the sample of 478 nm,which indicates the strong scale effect.The pressure induced boundary resistance change is obtained by fitting the impedance spectrum,which shows that the boundary conduction dominates the electrical transport behavior of Zn Se in the whole experimental pressure range.By comparing the impedance spectra of two different-sized Zn Se samples at high pressure,we find that the resistance of the 478-nm Zn Se sample is lower than that of the 859-nm sample,which illustrates that the sample with smaller particle size has more defects which are due to physical grinding. 展开更多
关键词 interface effect IMPEDANCE phase transition high pressure
下载PDF
Compression behavior and phase transition of β-Si_3N_4 under high pressure 被引量:1
9
作者 Hong-xia Gong Zi-li Kou +7 位作者 Cong Fan Hao Liang Qi-ming Wang Lei-lei Zhang Fang Peng Ming Yang Xiao-lin Ni Jing Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期400-404,共5页
The compressibility and pressure-induced phase transition of β-Si3N4 were investigated by using an angle dispersive x-ray diffraction technique in a diamond anvil cell at room temperature. Rietveld refinements of the... The compressibility and pressure-induced phase transition of β-Si3N4 were investigated by using an angle dispersive x-ray diffraction technique in a diamond anvil cell at room temperature. Rietveld refinements of the x-ray powder diffraction data verified that the hexagonal structure(with space group P63/m, Z = 2 formulas per unit cell) β-Si3N4 remained stable under high pressure up to 37 GPa. Upon increasing pressure, β-Si3 N4 transformed to δ-Si3N4 at about 41 GPa. The initial β-Si3N4 was recovered as the pressure was released to ambient pressure, implying that the observed pressureinduced phase transformation was reversible. The pressure–volume data of β-Si3N4 was fitted by the third-order Birch–Murnaghan equation of state, which yielded a bulk modulus K0= 273(2) GPa with its pressure derivative K0= 4(fixed)and K0= 278(2) GPa with K 0= 5. Furthermore, the compressibility of the unit cell axes(a and c-axes) for the β-Si3N4 demonstrated an anisotropic property with increasing pressure. 展开更多
关键词 phase transition bulk modulus Β-SI3N4 high pressure in situ x-ray diffraction
下载PDF
High-pressure Phase Equilibria for Binary Ethanol System Containing Supercritical CO_2 被引量:1
10
作者 朱虎刚 田宜灵 +2 位作者 陈丽 秦颖 冯季军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第3期322-325,共4页
High-pressure phase behavior of supercritical (SC) CO2+ethanol system was investigated at 333.2 K,348.2K, 353.2K, 368.2K, 413.2K and 453.2K and pressure from 2.0MPa to 14.3MPa. The measurement was carried out in a cy... High-pressure phase behavior of supercritical (SC) CO2+ethanol system was investigated at 333.2 K,348.2K, 353.2K, 368.2K, 413.2K and 453.2K and pressure from 2.0MPa to 14.3MPa. The measurement was carried out in a cylindrical autoclave with a moveable piston and a window for adjustment and observation of phase equilibria at given T and p. The samples were taken from two coexisting phases and were analyzed to obtain their compositions. It is shown that the solubility of SC CO2 in ethanol increases drastically with pressures at the given temperature, but the content of ethanol in CO2-rich phase increase faintly. 展开更多
关键词 supercritical CO2 ETHANOL phase equilibrium high pressure
下载PDF
High-pressure investigations on the isostructural phase transition and metallization in realgar with diamond anvil cells 被引量:1
11
作者 Linfei Yang Lidong Dai +4 位作者 Heping Li Haiying Hu Meiling Hong Xinyu Zhang Pengfei Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期1031-1037,共7页
The high-pressure structural,vibrational and electrical properties for realgar were investigated by in-situ Raman scattering and electrical conductivity experiments combined with first-principle calculations up to~30.... The high-pressure structural,vibrational and electrical properties for realgar were investigated by in-situ Raman scattering and electrical conductivity experiments combined with first-principle calculations up to~30.8 GPa.It was verified that realgar underwent an isostructural phase transition at~6.3 GPa and a metallization at a higher pressure of~23.5 GPa.The isostructural phase transition was well evidenced by the obvious variations of Raman peaks,electrical conductivity,crystal parameters and the As–S bond length.The phase transition of metallization was in closely associated with the closure of bandgap rather than caused by the structural phase transition.And furthermore,the metallic realgar exhibited a relatively low compressibility with the unit cell volume V_(0)=718.1.4Å^(3)and bulk modulus B_(0)=36.1 GPa. 展开更多
关键词 REALGAR Isostructural phase transition METALLIZATION Raman spectroscopy Electrical conductivity high pressure
下载PDF
First principles study on electronic structure and optical properties of novel Na-hP4 high pressure phase 被引量:1
12
作者 施毅敏 叶绍龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1092-1096,共5页
The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient a... The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient approximation(GGA)for the exchange and correlation energy.The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS)were presented.The band gap increases and the energy band expands to some extent with the pressure increasing.The dielectric function,reflectivity,energy-loss function,optical absorption coefficient,optical conductivity, refractive index and extinction coefficient were calculated for discussing the optical properties of Na-hP4 high pressure phase at different pressures. 展开更多
关键词 first principles novel Na-hP4 phase high pressure phase density functional theory electronic structure optical properties
下载PDF
Effects of high-pressure heat treatment on the solid-state phase transformation and microstructures of Cu_(61.13)Zn_(33.94)Al_(4.93) alloys 被引量:7
13
作者 王海燕 刘建华 +1 位作者 彭桂荣 王文魁 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期469-474,共6页
The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at var... The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at various heating and cooling rates. Then, the effects of high-pressure heat treatments on the solid-state phase transformation and the microstructures of Cu61.13Zn33.94A14.93 alloys were investigated. The results show that high-pressure heat treatments can refine the grains and can change the preferred orientation from (111) to (200) of α phase. Compared with the as-cast alloy, the sample with high-pressure heat treatment has finer grains, lower β'→β and/β→β' transformation temperature and activation energy. Furthermore, we found that high cooling rate favours the formation of fine needle-like α phase in the range of 5-20℃/min. 展开更多
关键词 Cu61.13Zn33.94A14.93 alloy high-pressure heat treatment solid-state phase transformation MICROSTRUCTURES
下载PDF
Thermodynamic Study on the Compositions of Fluid Phases in the C-O-H System Under High Temperature and Pressure 被引量:3
14
作者 白正华 王先彬 《Chinese Journal Of Geochemistry》 EI CAS 1998年第2期103-113,共11页
Based on the fluid phase equilibrium of the C-O-H system, the compositions of var-ious fluid phases under high temperatures and pressures have been calculated in terms of the available thermodynamic data and new P-V-T... Based on the fluid phase equilibrium of the C-O-H system, the compositions of var-ious fluid phases under high temperatures and pressures have been calculated in terms of the available thermodynamic data and new P-V-T data and on the assumption of PT = ΣPi in this paper. The results indicate that in this system there are 5 major fluid phases in different pro-portions at various T and P. CH4 is the dominant phase (about 70% ) under relatively lower T and P. Its proportion obviously decreases with increasing T, P and fo2. The results pro-vide sufficient theoretical grounds for discussing the possibility of CH4 formation and the physical-chemical conditions of its stable occurrence and proportion in the geological environment. 展开更多
关键词 液相 热力学 高温高压 天然气 非生物成因
下载PDF
Effect of high Pressure on the Solid-State Phase Transformation Microstructure of Cu-Zn Alloy
15
作者 刘建华 徐进 +2 位作者 何淼 杨坤 张瑞军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期185-187,共3页
The solid-state phase transformation microstructure of Cu-Zn alloy under different high pressure were investigated by means of SEM and XRD. The results show that the α phase with smaller grain size, different shape a... The solid-state phase transformation microstructure of Cu-Zn alloy under different high pressure were investigated by means of SEM and XRD. The results show that the α phase with smaller grain size, different shape and random distribution appears in the Cu-Zn alloy, when the solid-state phase transformation generation in the Cu-Zn alloy under 25~750 ℃ and 3~6 GPa high pressure, and the volume fraction of transformation phase decreases with increasing pressure, under high pressure (6 GPa), the changes of microstructure of Cu-Zn alloy is not obvious. In addition, the effect of high pressure on the solid-state phase transformation microstructure of Cu-Zn alloy was discussed. 展开更多
关键词 Cu-Zn alloy high pressure solid-state phase transformation MICROSTRUCTURE rare earths
下载PDF
Pressure-Induced Metallization and Electrical Phase Diagram for Polycrystalline CaB_6 under High Pressure and Low Temperature
16
作者 杨洁 焦阳 +1 位作者 韩永昊 李晶 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期88-90,共3页
The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with se... The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with semiconducting transport properties, which is different from the semimetallic CaB6 single crystals. The temperaturedependent resistance measurement results show that before the structural phase transition at 12.3 GPa the high pressure first induces the metallization at 6.5 GPa for CAB6. Moreover, the phase diagram for CaB6 is drawn based on the investigated electric conducting properties and at least three different conducting phases are found even at moderate high pressure and low temperature, indicating that the electric nature of CaB6 is very sensitive to the environment. 展开更多
关键词 for is of pressure-Induced Metallization and Electrical phase Diagram for Polycrystalline CaB6 under high pressure and Low Temperature in high been that
下载PDF
Unveiling the pressure-driven metal–semiconductor–metal transition in the doped TiS_(2)
17
作者 陈佳骏 吕心邓 +3 位作者 李思敏 但雅倩 黄艳萍 崔田 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期63-67,共5页
Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) un... Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure. 展开更多
关键词 high pressure transition metal dichalcogenides doped TiS_(2) electronic phase transition
下载PDF
First-principles investigation of the electronic,elastic and thermodynamic properties of VC under high pressure 被引量:2
18
作者 郝爱民 周铁军 +2 位作者 朱岩 张新宇 刘日平 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期415-420,共6页
An investigation of the electronic, elastic and thermodynamic properties of VC under high pressure has been conducted using first-principles calculations based on density functional theory (DFT) with the plane-wave ... An investigation of the electronic, elastic and thermodynamic properties of VC under high pressure has been conducted using first-principles calculations based on density functional theory (DFT) with the plane-wave basis set, as implemented in the CASTEP code. At elevated pressures, VC is predicted to undergo a structural transition from a relatively open NaCl-type structure to a more dense CsCl,type one. The predicted transition pressure is 520 GPa. The elastic constant, Debye temperature and heat capacity each as a function of pressure and/or temperature of VC are presented for the first time. 展开更多
关键词 high pressure first-principles calculations elastic property phase transition
下载PDF
The structure and elasticity of phase B silicates under high pressure by first principles simulation 被引量:1
19
作者 Lei Liu Li Yi +4 位作者 Hong Liu Ying Li Chun-Qiang Zhuang Long-Xing Yang Gui-Ping Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期445-450,共6页
The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pres... The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pressure.The lattice constants a and b decrease with increasing water content.On the contrary,c increases with increasing water content.On the other hand,the b and c decrease with increasing Fe content while a increases with increasing Fe content.The decrease of M(metal)–O octahedral volume is greater than the decrease of SiO polyhedral volume over the same pressure range.The density,bulk modulus and shear modulus of phase B increase with increasing Fe content and decrease with increasing water content.The compressional wave velocity(Vp) and shear wave velocity(Vs) of phase B decrease with increasing water and Fe content.The comparisons of density and wave velocity between phase B silicate and the Earth typical structure provide the evidence for understanding the formation of the X-discontinuity zone of the mantle. 展开更多
关键词 structural and elastic properties phase B silicates high pressure first principles simulation
下载PDF
Microstructure of the Hypoeutectic Al-Mg Alloy Solidified at 4 GPa High Pressure 被引量:1
20
作者 Zhen-Ling Wang Yu-Cheng Yu Zun-Jie Wei 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期101-105,共5页
High pressure solidification rules of Al-Mg alloy needs to be discussed further for its wide range of application. Microstructures and phases of Al-25wt% Mg alloy solidified at 4 GPa were studied by optical microscope... High pressure solidification rules of Al-Mg alloy needs to be discussed further for its wide range of application. Microstructures and phases of Al-25wt% Mg alloy solidified at 4 GPa were studied by optical microscope,X-ray diffractmeter,energy dispersive X-ray spectroscopy and transmission electron microscopy( TEM). The microstructure evolution mechanism of Al-25Mg alloy under high pressure was analyzed. The result shows that the alloy consists of α-Al phase and Al 3 Mg 2 phase under normal pressure. However,only Al 12 Mg 17 phase forms without Al 3 Mg 2 phase at 4 GPa. In addition,Mg concentration in α-Al phase increases and that of the lattice constant also increases. The α-Al dendrite presents the broken arms under normal pressure, after high pressure solidification,the morphology of the dendrite tends to integrate and the size of the dendrite arms 展开更多
关键词 Al-25Mg alloys high pressure solidification MICROSTRUCTURE phase
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部