The structural stability and electrical properties of AlB2-type MnB2 were studied based on high pressure angledispersive x-ray diffraction, in situ electrical resistivity measured in a diamond anvil cell(DAC) and firs...The structural stability and electrical properties of AlB2-type MnB2 were studied based on high pressure angledispersive x-ray diffraction, in situ electrical resistivity measured in a diamond anvil cell(DAC) and first-principles calculations under high pressure. The x-ray diffraction results show that the structure of AlB2-type MnB2 remains stable up to 42.6 GPa. From the equation of state of MnB2, we obtained a bulk modulus value of 169.9±3.7 GPa with a fixed pressure derivative of 4, which indicates that AlB2-type MnB2 is a hard and incompressible material. The electrical resistance undergoes a transition at about 19.3 GPa, which can be explained by a transition of manganese 3d electrons from localization to delocalization under high pressure.展开更多
Based on the 3D electron's radial wave function of Co 2+ free ion,a Nephelauxetic effect modifying factor to modify the radial wave function is introduced when Co 2+ cations are put into the crystal fie...Based on the 3D electron's radial wave function of Co 2+ free ion,a Nephelauxetic effect modifying factor to modify the radial wave function is introduced when Co 2+ cations are put into the crystal field of Zn 1-x Co x Se.With the modified wave functions,the optical transitions for Zn 1-x Co x Se crystals are calculated.Moreover,based on the first principle of physics,the influences of high pressure to the Nephelauxetic effect modifying factor is considered,and the high pressure blue shift for the Zn 1-x Co x Se crystal absorption spectra are calculated and a shift rate of d E /d p =0 45meV/GPa is obtained.展开更多
We systematically investigate the effect of pressure on the magnetic properties of GdCo2B2 on the basis of alternating current(AC) susceptibility,AC heat capacity and electrical resistivity measurements under pressu...We systematically investigate the effect of pressure on the magnetic properties of GdCo2B2 on the basis of alternating current(AC) susceptibility,AC heat capacity and electrical resistivity measurements under pressures up to 2.2 GPa.A detailed magnetic phase diagram under pressure is determined.GdCo2B2 exhibits three anomalies that apparently reflect magnetic phase transitions,respectively,at temperatures TC= 20.5 K,T1= 18.0 K and TN= 11.5 K under ambient pressure.Under pressures up to 2.2 GPa,these anomalies are observed to slightly increase at TCand T1,and they coincide with each other above 1.6 GPa.Conversely,they decrease at TN and disappear under pressures higher than 1.4 GPa.The results indicate that the low-temperature magnetic phases can be easily suppressed by pressure.Moreover,the spin-glass-like behavior of GdCo2B2 is examined in terms of magnetization,aging effect and frequency dependence of AC susceptibility.A separation between the zero-field-cooled(ZFC) and field-cooled(FC) magnetization curves becomes evident at a low magnetic field of 0.001 T.A long-time relaxation behavior is observed at 4 K.The freezing temperature Tfincreases with frequency increasing.展开更多
The crystallization behaviour of amorphous Al_(85)Ni_(10)Y_(5) alloy under high pressure was investigated.Results showed that the amorphous state can be preserved when the alloy is treated under high pressure at tempe...The crystallization behaviour of amorphous Al_(85)Ni_(10)Y_(5) alloy under high pressure was investigated.Results showed that the amorphous state can be preserved when the alloy is treated under high pressure at temperature below 325℃,the polytropic crystallization takes place when the alloy is treated at 325〜520 ℃ and 3〜6GPa for 1 min;the crystallizing product is nanometer scale supersaturated fee-Al solid solution particles dispersed in amorphous matrix;under 1 GPa pressure amorphous allloy crystallizes in an eutectic way,the crystallizing products are fee-Al,Al_(3)Y,Al_(3)Ni,AlNiY equilibrium crystalline phases etc.High pressure appreciably changes the crystallization mode and the products,elevates the crystallizing temperature.展开更多
With lignite after vacuum drying as the raw material,a series of Zn-based sorbents were prepared by static impregnation,ultrasonic-assisted impregnation,bubbling-assisted impregnation and high-pressure impregnation.Th...With lignite after vacuum drying as the raw material,a series of Zn-based sorbents were prepared by static impregnation,ultrasonic-assisted impregnation,bubbling-assisted impregnation and high-pressure impregnation.The physical properties and the desulfurization performances of Zn-based sorbents were studied systematically by XRD,BET,AAS characterization techniques and the fixed-bed desulfurization evaluation apparatus.The sorbents obtained by high-pressure impregnation method have a larger specific surface area,pore volume and pore diameter comparing with other methods,which is conducive to the sulfidation reaction of hydrogen sulfide gas in the sorbent.The effects of pressure during the high-pressure impregnation and concentration of Zn(NO3)2 precursor solution on the sorbents properties and desulfurization behavior were investigated.The higher the impregnation pressure and the concentration of impregnation solution are,the greater the amount of the active components are uploaded.However,overhigh impregnation pressure can cause collapse and blocking of the carrier pore.The optimal operating condition of high-pressure impregnation method for preparing the sorbents was the impregnation pressure of 20 atm and the solution concentration of 41%.Under that condition,the sorbent had the best desulfurization ability with a sulfur capacity of 13.94 gS/100 gsorbent and a breakthrough time of 54 h.Its desulfurization precision and efficiency of removing H2S before sorbent breakthrough from the middle temperature gases of 400℃ can reach【5 ppm and】99%,respectively.Sorbents could be regenerated under the condition of 1 vol%O2,20 vol% H2O,0.5 vol% NH3,and N2balance gas.The regenerated sorbent could be used for repeated absorption of H2S with a slight decrease in desulfurization effect.展开更多
An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1....An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1. For the purpose of verification, variation of DFT with the loading rate for two high strength steels commonly used in the aviation industry, 30CrMnSiA and 40Cr, is studied in this work. Results of the experiments are compared, which were conducted on the modified split Hopkinson pressure bar (SHPB) apparatus, with striker velocities ranging from 9.2 to 24.1 m/s and a constant value of 16.3 m/s for 30CrMnSiA and 40Cr, respectively. It is observed that for 30CrMnSiA, the crack tip loading rate increases with the increase of the striker velocity, while the fracture initiation time and the DFT simultaneously decrease. However, in the tests of 40Cr, there is also an increasing tendency of DFT, similar to other reports. Through an in-depth investigation on the relationship between the dynamic stress intensity factor (DSIF) and the loading rate, it is concluded that the generally increasing tendency in previous studies could be false, which is induced from a limited striker velocity domain and the errors existing in the experimental and numerical processes. To disclose the real dependency of DFT on the loading rate, experimentsneed to be performed in a comparatively large striker velocity range.展开更多
Commonly the centre of an intense heavy rain occurs in a very limited area,but for the three extra- intense heavy rains of the present study,63-8 in North China,75-8 in central China and 77-8 in the desert region of I...Commonly the centre of an intense heavy rain occurs in a very limited area,but for the three extra- intense heavy rains of the present study,63-8 in North China,75-8 in central China and 77-8 in the desert region of Inner Mongolia,which all appeared under the environments of“Western Low and Eastern Blocking” (EB)pattern.From this study,the following effects of the EB are found:(1)It affects the precipitation systems staggering in a local place and/or changes the trajectories of low votices and urges them into the same raining areas intermittently.(2)It transports water vapour into raining areas.The air flows by the west side of EB produce strong cyclonic vorticity behind EB frequently,which transports water vapour and forms mesoscale precipitation systems more favourably than the low level jets.(3)Air flows behind EB con- jugate with adequate topographic relief,which enhances the precipitation and makes the raining areas over- lapped.So that extra-intense heavy rains could occur in higher latitudes of semi-aird areas,and occasionally even in the desert region of North China. Such extra-intense heavy rains could not be explained by static local humidity and temperature only. This is also a principal discrimination between the prolonged extra-intense heavy rain and the short-range convective precipitation and/or the common precipitation.展开更多
Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculat...Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.展开更多
First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium la...First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimented data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wave velocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than the experimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Sip states indicates a certain covalency of the Os-Si bonds.展开更多
Recently emerging disadvantages in conventional disinfection have heightened the need for finding a new solution. Developments in the use of high pressure carbon dioxide for food preservation and sterilization have le...Recently emerging disadvantages in conventional disinfection have heightened the need for finding a new solution. Developments in the use of high pressure carbon dioxide for food preservation and sterilization have led to a renewed interest in its applicability in wastewater treatment and water disinfection. Pressurized CO2 is one of the most investigated methods of antibacterial treatment and has been used extensively for decades to inhibit pathogens in dried food and liquid products. This study reviews the literature concerning the utility of CO2 as a disinfecting agent, and the pathogen inactivation mechanism of CO2 treatment is evaluated based on all available research. In this paper, it will be argued that the successful application and high effectiveness of CO2 treatment in liquid foods open a potential opportunity for its use in wastewater treatment and water disinfection. The findings from models with different operating conditions(pressure, temperature, microorganism, water content, media …) suggest that most microorganisms are successfully inhibited under CO2 treatment. It will also be shown that the bacterial deaths under CO2 treatment can be explained by many different mechanisms.Moreover, the findings in this study can help to address the recently emerging problems in water disinfection, such as disinfection by-products(resulting from chlorination or ozone treatment).展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the Program for Changjiang Scholars and Innovative Re- search Team in University, China (Grant No. IRT1132), the National Natural Science Foundation of China (Grant Nos. 51032001, 11074090, 10979001, and 51025206), and the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences (Grant No. DE-AC02-98CH 10886).
文摘The structural stability and electrical properties of AlB2-type MnB2 were studied based on high pressure angledispersive x-ray diffraction, in situ electrical resistivity measured in a diamond anvil cell(DAC) and first-principles calculations under high pressure. The x-ray diffraction results show that the structure of AlB2-type MnB2 remains stable up to 42.6 GPa. From the equation of state of MnB2, we obtained a bulk modulus value of 169.9±3.7 GPa with a fixed pressure derivative of 4, which indicates that AlB2-type MnB2 is a hard and incompressible material. The electrical resistance undergoes a transition at about 19.3 GPa, which can be explained by a transition of manganese 3d electrons from localization to delocalization under high pressure.
文摘Based on the 3D electron's radial wave function of Co 2+ free ion,a Nephelauxetic effect modifying factor to modify the radial wave function is introduced when Co 2+ cations are put into the crystal field of Zn 1-x Co x Se.With the modified wave functions,the optical transitions for Zn 1-x Co x Se crystals are calculated.Moreover,based on the first principle of physics,the influences of high pressure to the Nephelauxetic effect modifying factor is considered,and the high pressure blue shift for the Zn 1-x Co x Se crystal absorption spectra are calculated and a shift rate of d E /d p =0 45meV/GPa is obtained.
基金Project supported by JSPS KAKENHI(Grant No.24540366,Grant-in-Aid for Scientific Research(C))
文摘We systematically investigate the effect of pressure on the magnetic properties of GdCo2B2 on the basis of alternating current(AC) susceptibility,AC heat capacity and electrical resistivity measurements under pressures up to 2.2 GPa.A detailed magnetic phase diagram under pressure is determined.GdCo2B2 exhibits three anomalies that apparently reflect magnetic phase transitions,respectively,at temperatures TC= 20.5 K,T1= 18.0 K and TN= 11.5 K under ambient pressure.Under pressures up to 2.2 GPa,these anomalies are observed to slightly increase at TCand T1,and they coincide with each other above 1.6 GPa.Conversely,they decrease at TN and disappear under pressures higher than 1.4 GPa.The results indicate that the low-temperature magnetic phases can be easily suppressed by pressure.Moreover,the spin-glass-like behavior of GdCo2B2 is examined in terms of magnetization,aging effect and frequency dependence of AC susceptibility.A separation between the zero-field-cooled(ZFC) and field-cooled(FC) magnetization curves becomes evident at a low magnetic field of 0.001 T.A long-time relaxation behavior is observed at 4 K.The freezing temperature Tfincreases with frequency increasing.
基金Supported by the National Natural Science Foundation of China。
文摘The crystallization behaviour of amorphous Al_(85)Ni_(10)Y_(5) alloy under high pressure was investigated.Results showed that the amorphous state can be preserved when the alloy is treated under high pressure at temperature below 325℃,the polytropic crystallization takes place when the alloy is treated at 325〜520 ℃ and 3〜6GPa for 1 min;the crystallizing product is nanometer scale supersaturated fee-Al solid solution particles dispersed in amorphous matrix;under 1 GPa pressure amorphous allloy crystallizes in an eutectic way,the crystallizing products are fee-Al,Al_(3)Y,Al_(3)Ni,AlNiY equilibrium crystalline phases etc.High pressure appreciably changes the crystallization mode and the products,elevates the crystallizing temperature.
基金supported by the National Basic Research Program of China(2012CB723105)the National Natural Science Foundation of China(20976117)Shanxi Graduates Excellent Innovation Project of China(tyut-rc201018a)
文摘With lignite after vacuum drying as the raw material,a series of Zn-based sorbents were prepared by static impregnation,ultrasonic-assisted impregnation,bubbling-assisted impregnation and high-pressure impregnation.The physical properties and the desulfurization performances of Zn-based sorbents were studied systematically by XRD,BET,AAS characterization techniques and the fixed-bed desulfurization evaluation apparatus.The sorbents obtained by high-pressure impregnation method have a larger specific surface area,pore volume and pore diameter comparing with other methods,which is conducive to the sulfidation reaction of hydrogen sulfide gas in the sorbent.The effects of pressure during the high-pressure impregnation and concentration of Zn(NO3)2 precursor solution on the sorbents properties and desulfurization behavior were investigated.The higher the impregnation pressure and the concentration of impregnation solution are,the greater the amount of the active components are uploaded.However,overhigh impregnation pressure can cause collapse and blocking of the carrier pore.The optimal operating condition of high-pressure impregnation method for preparing the sorbents was the impregnation pressure of 20 atm and the solution concentration of 41%.Under that condition,the sorbent had the best desulfurization ability with a sulfur capacity of 13.94 gS/100 gsorbent and a breakthrough time of 54 h.Its desulfurization precision and efficiency of removing H2S before sorbent breakthrough from the middle temperature gases of 400℃ can reach【5 ppm and】99%,respectively.Sorbents could be regenerated under the condition of 1 vol%O2,20 vol% H2O,0.5 vol% NH3,and N2balance gas.The regenerated sorbent could be used for repeated absorption of H2S with a slight decrease in desulfurization effect.
基金supported by the 111 Project (B07050)the National Natural Science Foundation of China (10932008)
文摘An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1. For the purpose of verification, variation of DFT with the loading rate for two high strength steels commonly used in the aviation industry, 30CrMnSiA and 40Cr, is studied in this work. Results of the experiments are compared, which were conducted on the modified split Hopkinson pressure bar (SHPB) apparatus, with striker velocities ranging from 9.2 to 24.1 m/s and a constant value of 16.3 m/s for 30CrMnSiA and 40Cr, respectively. It is observed that for 30CrMnSiA, the crack tip loading rate increases with the increase of the striker velocity, while the fracture initiation time and the DFT simultaneously decrease. However, in the tests of 40Cr, there is also an increasing tendency of DFT, similar to other reports. Through an in-depth investigation on the relationship between the dynamic stress intensity factor (DSIF) and the loading rate, it is concluded that the generally increasing tendency in previous studies could be false, which is induced from a limited striker velocity domain and the errors existing in the experimental and numerical processes. To disclose the real dependency of DFT on the loading rate, experimentsneed to be performed in a comparatively large striker velocity range.
文摘Commonly the centre of an intense heavy rain occurs in a very limited area,but for the three extra- intense heavy rains of the present study,63-8 in North China,75-8 in central China and 77-8 in the desert region of Inner Mongolia,which all appeared under the environments of“Western Low and Eastern Blocking” (EB)pattern.From this study,the following effects of the EB are found:(1)It affects the precipitation systems staggering in a local place and/or changes the trajectories of low votices and urges them into the same raining areas intermittently.(2)It transports water vapour into raining areas.The air flows by the west side of EB produce strong cyclonic vorticity behind EB frequently,which transports water vapour and forms mesoscale precipitation systems more favourably than the low level jets.(3)Air flows behind EB con- jugate with adequate topographic relief,which enhances the precipitation and makes the raining areas over- lapped.So that extra-intense heavy rains could occur in higher latitudes of semi-aird areas,and occasionally even in the desert region of North China. Such extra-intense heavy rains could not be explained by static local humidity and temperature only. This is also a principal discrimination between the prolonged extra-intense heavy rain and the short-range convective precipitation and/or the common precipitation.
基金Ministry of Earth Sciences,Government of India for financial support under the project grant no.MoES/16/25/10-RDEASDST,INSPIRE program by Department of Science and Technology,Government of India for financial support。
文摘Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.
基金Supported by the National Natural Science Foundation of China under Grant No.10974139the Doctoral Program Foundation of Institution of Higher Education of China under Grant No.20050610010+1 种基金the Natural Science Foundation of the Education Bureau of Guizhou Province of China under Grant No.2005105the Governor's Foundation for Science and Education Elites of Guizhou Province under Grant No.QSZHZ2006(113)
文摘First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimented data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wave velocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than the experimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Sip states indicates a certain covalency of the Os-Si bonds.
文摘Recently emerging disadvantages in conventional disinfection have heightened the need for finding a new solution. Developments in the use of high pressure carbon dioxide for food preservation and sterilization have led to a renewed interest in its applicability in wastewater treatment and water disinfection. Pressurized CO2 is one of the most investigated methods of antibacterial treatment and has been used extensively for decades to inhibit pathogens in dried food and liquid products. This study reviews the literature concerning the utility of CO2 as a disinfecting agent, and the pathogen inactivation mechanism of CO2 treatment is evaluated based on all available research. In this paper, it will be argued that the successful application and high effectiveness of CO2 treatment in liquid foods open a potential opportunity for its use in wastewater treatment and water disinfection. The findings from models with different operating conditions(pressure, temperature, microorganism, water content, media …) suggest that most microorganisms are successfully inhibited under CO2 treatment. It will also be shown that the bacterial deaths under CO2 treatment can be explained by many different mechanisms.Moreover, the findings in this study can help to address the recently emerging problems in water disinfection, such as disinfection by-products(resulting from chlorination or ozone treatment).