The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transfor...The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.展开更多
The thermal diffusion coefficient, thermal conductivity, and thermal expansion coefficient of CuCr alloy prepared by infiltration were measured by thermal constant tester and dilatometer before and after high pressure...The thermal diffusion coefficient, thermal conductivity, and thermal expansion coefficient of CuCr alloy prepared by infiltration were measured by thermal constant tester and dilatometer before and after high pressure heat treatment, at the same time, the effect of high pressure treatment on the thermal physical properties of CuCr alloy was discussed by the analysis of its microstructure. The experimental results show that high pressure heat treatment can increase the thermal diffusion coefficient and thermal conductivity of CuCr alloy, but it changes slightly in the pressure range of 1-6 GPa. As for thermal expansion coefficient, when the temperature is higher than 130 °C, it is obviously higher than that of the alloy without high pressure treatment after 1 GPa pressure treatment, and the higher the temperature is, the larger their differences are.展开更多
Based on the differ—ent theories,TCM andWestern medicine(WM)have their owndifferent understandingsabout the pathogenesisand treatment of highblood pressure(HBP).In TCM the balancesbetween blood-qi,vis—cera—bowel, a...Based on the differ—ent theories,TCM andWestern medicine(WM)have their owndifferent understandingsabout the pathogenesisand treatment of highblood pressure(HBP).In TCM the balancesbetween blood-qi,vis—cera—bowel, and yin—yang are all highly展开更多
基金Project(11541012) supported by the Scientific Research Foundation of Heilongjiang Provincial Education Department,China
文摘The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.
基金financially supported by the Natural Science Foundation of Hebei Province (CHN) (No. E2010001174)
文摘The thermal diffusion coefficient, thermal conductivity, and thermal expansion coefficient of CuCr alloy prepared by infiltration were measured by thermal constant tester and dilatometer before and after high pressure heat treatment, at the same time, the effect of high pressure treatment on the thermal physical properties of CuCr alloy was discussed by the analysis of its microstructure. The experimental results show that high pressure heat treatment can increase the thermal diffusion coefficient and thermal conductivity of CuCr alloy, but it changes slightly in the pressure range of 1-6 GPa. As for thermal expansion coefficient, when the temperature is higher than 130 °C, it is obviously higher than that of the alloy without high pressure treatment after 1 GPa pressure treatment, and the higher the temperature is, the larger their differences are.
文摘Based on the differ—ent theories,TCM andWestern medicine(WM)have their owndifferent understandingsabout the pathogenesisand treatment of highblood pressure(HBP).In TCM the balancesbetween blood-qi,vis—cera—bowel, and yin—yang are all highly
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11902289,12172324,12222210,and 12202381)Zhejiang University K.P.Chao’s High Technology Development Foundation,and China Postdoctoral Science Foundation(Grant No.2022M712758).