Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with i-band magnitudes brighter than 19.5 and...Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with i-band magnitudes brighter than 19.5 and redshifts between 2.4 and 4.6 from spectroscopy with the Yunnan Faint Object Spectrograph and Camera (YFOSC) at the Lijiang 2.4 m telescope in February, 2012. These quasars are in the list of z > 3.6 quasar candidates selected by using our proposed J K/i Y criterion and the photometric redshift estimations from the SDSS optical and UKIDSS near-IR photometric data. Nine candidates were observed by YFOSC, and five among six new quasars were identified as z > 3.6 quasars. One of the other three objects was identified as a star and the other two were unidentified due to the lower signal-to-noise ratio of their spectra. This is the first time that z > 4 quasars have been discovered using a telescope in China. Thanks to the Chinese Telescope Access Program (TAP), the redshift of 4.6 for one of these quasars was confirmed by the Multiple Mirror Telescope (MMT) Red Channel spectroscopy. The continuum and emission line properties of these six quasars, as well as their central black hole masses and Eddington ratios, were obtained.展开更多
The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an u...The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an unsolved problem with a long history and it still exists in the current photometric redshift estimation approaches (such as the k-nearest neighbor (KNN) algorithm). In this paper, we propose a novel two-stage approach by integration of KNN and support vector machine (SVM) methods together. In the first stage, we apply the KNN algorithm to photometric data and estimate their corresponding Zphot. Our analysis has found two dense regions with catastrophic failure, one in the range of Zphot E [0.3, 1.2] and the other in the range of Zphot E [1.2, 2.1]. In the second stage, we map the photometric input pattern of points falling into the two ranges from their original attribute space into a high dimensional feature space by using a Gaussian kernel function from an SVM. In the high dimensional feature space, many outliers resulting from catastrophic failure by simple Euclidean distance computation in KNN can be identified by a classification hyperplane of SVM and can be further corrected. Experimental results based on the Sloan Digital Sky Survey (SDSS) quasar data show that the two-stage fusion approach can significantly mitigate catastrophic failure and improve the estimation accuracy of photometric redshifts of quasars. The percents in different /△z/ ranges and root mean square (rms) error by the integrated method are 83.47%, 89.83%, 90.90% and 0.192, respectively, compared to the results by KNN (71.96%, 83.78%, 89.73% and 0.204).展开更多
We study the growth of black holes and stellar population in spheroids at high redshift using several (sub)mm-loud QSO samples. Applying the same criteria established in an earlier work, we find that, similar to IR ...We study the growth of black holes and stellar population in spheroids at high redshift using several (sub)mm-loud QSO samples. Applying the same criteria established in an earlier work, we find that, similar to IR QSOs at low redshift, the far-infrared emission of these (sub)mm-loud QSOs mainly originates from dust heated by starbursts. By combining low-z IR QSOs and high-z (sub)mm-loud QSOs, we find a trend that the star formation rate (M*) increases with the accretion rate (Mace). We compare the values of M*/Macc for submm emitting galaxies (SMGs), far-infrared ultraluminous/hypeduminous QSOs and typical QSOs, and construct a likely evolution scenario for these objects. The (sub)mm-loud QSO transition phase has both high Macc and M* and hence is important for establishing the correlation between the masses of black holes and spheroids.展开更多
We have obtained deep J and Ks-band images centered on a bright radio quiet QSO UM 402 (Zem = 2.856) using the IRCS camera and adaptive optics systems that are part of the Subaru Telescope, as well as retrieved WFC3...We have obtained deep J and Ks-band images centered on a bright radio quiet QSO UM 402 (Zem = 2.856) using the IRCS camera and adaptive optics systems that are part of the Subaru Telescope, as well as retrieved WFC3/F140W archive images of this object. A faint galaxy (ink = 23.32 ±0.05 in the Vega magnitude system) that lies ~2.4″north of the QSO sightline has been clearly resolved in all three deep high resolution datasets, and appears as an irregular galaxy with two close components in the Ks-band images (separation ~ 0.31″). Given the small impact parameter (b = 19.6 kpc, at Zlls = 2.531), as well as the red color of (J - Ks)vega ~1.6, it might be a candidate galaxy giving rise to the Lyman Limit system absorption at Zabs = 2.531 seen in the QSO spectrum. After carefully subtracting the point spread function from the QSO images, the host galaxy of this bright radio quiet QSO at z ~ 3 was marginally revealed. We placed a lower limit on the host component of mk~ 23.3 according to our analyses.展开更多
High resolution deep imaging from space and adaptive optics techniques with large ground-based facilities have enabled studies examining faint host galaxies of high redshift quasi-stellar objects (QSOs). However, the ...High resolution deep imaging from space and adaptive optics techniques with large ground-based facilities have enabled studies examining faint host galaxies of high redshift quasi-stellar objects (QSOs). However, the related image processing techniques, especially for a precise point-spread function (PSF) reconstruction and characterization of the host galaxy light profiles, have yet to be optimized. We present here the scientific performance of a principal component analysis (PCA) based PSF subtraction of the central bright point source of high redshift QSO images, as well as further characterization of the host galaxy profile by directly fitting a Sèrsic model to the residual image using the Markov Chain Monte Carlo (MCMC) algorithm. With a set of reference PSF star images which represent interleaving exposures between the QSO imaging, we can create an orthogonal basis of eigen-images and restore the PSF of QSO images by projecting the QSO images onto the basis. In this way, we can quantify the modes in which the PSF varies with time by a basis function that characterizes the temporal variations of the reference star as well as the QSO images. To verify the algorithm, we performed a simulation and applied this method to one of the high-z QSO targets from Mechtley et al. We demonstrate that the PCA-based PSF subtraction and further modeling of the galaxy’s light profile using MCMC fitting would sufficiently remove the effects from central dominating point sources, and improve characterization ability for the host galaxies of high-z QSOs to the background noise level which is much better than previous two-component fitting procedures.展开更多
Based on measured broad line region sizes in the reverberation-mapping AGN sample, two new empirical relations are introduced to estimate the central black hole masses of radio-loud high-redshift (z 〉 0.5) AGNs. Fi...Based on measured broad line region sizes in the reverberation-mapping AGN sample, two new empirical relations are introduced to estimate the central black hole masses of radio-loud high-redshift (z 〉 0.5) AGNs. First, using the archival IUE/HST spectroscopy data at UV band for the reverberation-mapping objects, we obtained two new empirical relations between the BLR size and Mg Ⅱ/C Ⅳ emission line luminosity. Secondly, using the newly determined black hole masses of the reverberation-mapping sample as calibration, we found two new relationships for determining the black hole mass with the full width at half maximum and the luminosity of Mg Ⅱ/C Ⅳ line. We then apply the relations to estimate the black hole masses of the AGNs in the Large Bright Quasar Survey and a sample of radio-loud quasars. For the objects with small radio-loudness, the black hole mass estimated using the RBLR-LMg Ⅱ/C Ⅳ relation is consistent with that from the RBLR-L3000 A/1350 A relation. For radio-loud AGNs, however, the mass estimated from the RBLR-LMg Ⅱ/C Ⅳ relation is systematically lower than that from the continuum luminosity L3000 A/13S0 A Because jets could have significant contributions to the UV/optical continuum luminosity of radio-loud AGNs, we emphasize once again that for radio-loud AGNs, the emission line luminosity may be a better tracer of the ionizing luminosity than the continuum luminosity, so that the relations between the BLR size and UV emission line luminosities should be used to estimate the black hole masses of high redshift radio-loud AGNs.展开更多
Studying the first generation of stars, galaxies and supermassive black holes as well as the epoch of reionization is one of the fundamental questions of modern as- trophysics. The last few years have witnessed the fi...Studying the first generation of stars, galaxies and supermassive black holes as well as the epoch of reionization is one of the fundamental questions of modern as- trophysics. The last few years have witnessed the first confirmation of the discoveries of galaxies, quasars and Gamma-Ray Bursts at z 〉 7, with possible detections at z - 10. There is also mounting evidence that cosmic reionization is a prolonged pro- cess that peaks around z - 10 and ends at z- 6 - 7. Observations of the highest redshift intergalactic medium and the most metal-poor stars in the Galaxy begin to constrain the earliest chemical enrichment processes in the Universe. These observa- tions provide a glimpse of cosmic history over the first billion years after the Big Bang. In this review, we will present recent results on the observations of the high-redshift Universe over the past decade, highlight key challenges and uncertainties in these observations, and preview what is possible with the next generation facilities in studying the first light and mapping the history of reionization.展开更多
基金the National Natural Science Foundation of China (Grant No. 11033001)
文摘Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with i-band magnitudes brighter than 19.5 and redshifts between 2.4 and 4.6 from spectroscopy with the Yunnan Faint Object Spectrograph and Camera (YFOSC) at the Lijiang 2.4 m telescope in February, 2012. These quasars are in the list of z > 3.6 quasar candidates selected by using our proposed J K/i Y criterion and the photometric redshift estimations from the SDSS optical and UKIDSS near-IR photometric data. Nine candidates were observed by YFOSC, and five among six new quasars were identified as z > 3.6 quasars. One of the other three objects was identified as a star and the other two were unidentified due to the lower signal-to-noise ratio of their spectra. This is the first time that z > 4 quasars have been discovered using a telescope in China. Thanks to the Chinese Telescope Access Program (TAP), the redshift of 4.6 for one of these quasars was confirmed by the Multiple Mirror Telescope (MMT) Red Channel spectroscopy. The continuum and emission line properties of these six quasars, as well as their central black hole masses and Eddington ratios, were obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61272272 and U1531122)the Natural Science Foundation of Hubei province (Grant2015CFA058)+1 种基金the National Key Basic Research Program of China (2014CB845700)the NSFC-Texas A&M University Joint Research Program (No.11411120219)
文摘The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an unsolved problem with a long history and it still exists in the current photometric redshift estimation approaches (such as the k-nearest neighbor (KNN) algorithm). In this paper, we propose a novel two-stage approach by integration of KNN and support vector machine (SVM) methods together. In the first stage, we apply the KNN algorithm to photometric data and estimate their corresponding Zphot. Our analysis has found two dense regions with catastrophic failure, one in the range of Zphot E [0.3, 1.2] and the other in the range of Zphot E [1.2, 2.1]. In the second stage, we map the photometric input pattern of points falling into the two ranges from their original attribute space into a high dimensional feature space by using a Gaussian kernel function from an SVM. In the high dimensional feature space, many outliers resulting from catastrophic failure by simple Euclidean distance computation in KNN can be identified by a classification hyperplane of SVM and can be further corrected. Experimental results based on the Sloan Digital Sky Survey (SDSS) quasar data show that the two-stage fusion approach can significantly mitigate catastrophic failure and improve the estimation accuracy of photometric redshifts of quasars. The percents in different /△z/ ranges and root mean square (rms) error by the integrated method are 83.47%, 89.83%, 90.90% and 0.192, respectively, compared to the results by KNN (71.96%, 83.78%, 89.73% and 0.204).
基金Supported by the National Natural Science Foundation of China.
文摘We study the growth of black holes and stellar population in spheroids at high redshift using several (sub)mm-loud QSO samples. Applying the same criteria established in an earlier work, we find that, similar to IR QSOs at low redshift, the far-infrared emission of these (sub)mm-loud QSOs mainly originates from dust heated by starbursts. By combining low-z IR QSOs and high-z (sub)mm-loud QSOs, we find a trend that the star formation rate (M*) increases with the accretion rate (Mace). We compare the values of M*/Macc for submm emitting galaxies (SMGs), far-infrared ultraluminous/hypeduminous QSOs and typical QSOs, and construct a likely evolution scenario for these objects. The (sub)mm-loud QSO transition phase has both high Macc and M* and hence is important for establishing the correlation between the masses of black holes and spheroids.
基金Supported by the National Natural Science Foundation of China
文摘We have obtained deep J and Ks-band images centered on a bright radio quiet QSO UM 402 (Zem = 2.856) using the IRCS camera and adaptive optics systems that are part of the Subaru Telescope, as well as retrieved WFC3/F140W archive images of this object. A faint galaxy (ink = 23.32 ±0.05 in the Vega magnitude system) that lies ~2.4″north of the QSO sightline has been clearly resolved in all three deep high resolution datasets, and appears as an irregular galaxy with two close components in the Ks-band images (separation ~ 0.31″). Given the small impact parameter (b = 19.6 kpc, at Zlls = 2.531), as well as the red color of (J - Ks)vega ~1.6, it might be a candidate galaxy giving rise to the Lyman Limit system absorption at Zabs = 2.531 seen in the QSO spectrum. After carefully subtracting the point spread function from the QSO images, the host galaxy of this bright radio quiet QSO at z ~ 3 was marginally revealed. We placed a lower limit on the host component of mk~ 23.3 according to our analyses.
基金support of a grant from the John Templeton Foundation and the National Astronomical Observatories, Chinese Academy of Sciencesthe Subaru team and the National Natural Science Foundation of China (Grant No. 11890694)+1 种基金the National Natural Science Foundation of China (Grant Nos. 10173025, 10673013, 10778709, 11073031 and 11653005)the National Basic Research Program of China (973 Program, TG 2000077602)
文摘High resolution deep imaging from space and adaptive optics techniques with large ground-based facilities have enabled studies examining faint host galaxies of high redshift quasi-stellar objects (QSOs). However, the related image processing techniques, especially for a precise point-spread function (PSF) reconstruction and characterization of the host galaxy light profiles, have yet to be optimized. We present here the scientific performance of a principal component analysis (PCA) based PSF subtraction of the central bright point source of high redshift QSO images, as well as further characterization of the host galaxy profile by directly fitting a Sèrsic model to the residual image using the Markov Chain Monte Carlo (MCMC) algorithm. With a set of reference PSF star images which represent interleaving exposures between the QSO imaging, we can create an orthogonal basis of eigen-images and restore the PSF of QSO images by projecting the QSO images onto the basis. In this way, we can quantify the modes in which the PSF varies with time by a basis function that characterizes the temporal variations of the reference star as well as the QSO images. To verify the algorithm, we performed a simulation and applied this method to one of the high-z QSO targets from Mechtley et al. We demonstrate that the PCA-based PSF subtraction and further modeling of the galaxy’s light profile using MCMC fitting would sufficiently remove the effects from central dominating point sources, and improve characterization ability for the host galaxies of high-z QSOs to the background noise level which is much better than previous two-component fitting procedures.
基金Supported by the National Natural Science Foundation of China.
文摘Based on measured broad line region sizes in the reverberation-mapping AGN sample, two new empirical relations are introduced to estimate the central black hole masses of radio-loud high-redshift (z 〉 0.5) AGNs. First, using the archival IUE/HST spectroscopy data at UV band for the reverberation-mapping objects, we obtained two new empirical relations between the BLR size and Mg Ⅱ/C Ⅳ emission line luminosity. Secondly, using the newly determined black hole masses of the reverberation-mapping sample as calibration, we found two new relationships for determining the black hole mass with the full width at half maximum and the luminosity of Mg Ⅱ/C Ⅳ line. We then apply the relations to estimate the black hole masses of the AGNs in the Large Bright Quasar Survey and a sample of radio-loud quasars. For the objects with small radio-loudness, the black hole mass estimated using the RBLR-LMg Ⅱ/C Ⅳ relation is consistent with that from the RBLR-L3000 A/1350 A relation. For radio-loud AGNs, however, the mass estimated from the RBLR-LMg Ⅱ/C Ⅳ relation is systematically lower than that from the continuum luminosity L3000 A/13S0 A Because jets could have significant contributions to the UV/optical continuum luminosity of radio-loud AGNs, we emphasize once again that for radio-loud AGNs, the emission line luminosity may be a better tracer of the ionizing luminosity than the continuum luminosity, so that the relations between the BLR size and UV emission line luminosities should be used to estimate the black hole masses of high redshift radio-loud AGNs.
基金supported by a David and Lucile Packard Fellowshipthe US National Science Foundation (NSF) Grants AST 08-06861 and AST 11-07682
文摘Studying the first generation of stars, galaxies and supermassive black holes as well as the epoch of reionization is one of the fundamental questions of modern as- trophysics. The last few years have witnessed the first confirmation of the discoveries of galaxies, quasars and Gamma-Ray Bursts at z 〉 7, with possible detections at z - 10. There is also mounting evidence that cosmic reionization is a prolonged pro- cess that peaks around z - 10 and ends at z- 6 - 7. Observations of the highest redshift intergalactic medium and the most metal-poor stars in the Galaxy begin to constrain the earliest chemical enrichment processes in the Universe. These observa- tions provide a glimpse of cosmic history over the first billion years after the Big Bang. In this review, we will present recent results on the observations of the high-redshift Universe over the past decade, highlight key challenges and uncertainties in these observations, and preview what is possible with the next generation facilities in studying the first light and mapping the history of reionization.