Dye desalination is a challenge in the treatment of textile wastewater with high salt concentration. It is imperative to develop salt resistance membrane that is from sustainable materials to effectively treat dye/sal...Dye desalination is a challenge in the treatment of textile wastewater with high salt concentration. It is imperative to develop salt resistance membrane that is from sustainable materials to effectively treat dye/salt mixtures. And most polymer membrane materials are non-renewable petrochemical resources.In this paper, a green hydrogel membrane(CMCS-OA-Na Alg) was prepared by non-metallic ions of oxalic acid(OA) cross-linking of two natural macromolecules of sodium alginate(Na Alg) and carboxymethyl chitosan(CMCS). The membrane showed excellent anti-swelling at high salt concentration(swelling rate less than 8.0% in 10.0 wt% Na Cl solution) and good anti-fouling performance. The membrane exhibited a rejection higher than 95.0% for dyes(bright blue, direct black, direct red, and Congo red) and lower than7.0% for Na Cl, which can achieve better dye/Na Cl separation performance. This study provides a promising membrane material for high salt textile wastewater treatment only using water and carbohydrates as raw materials without any organic solvents.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51708407 and 51803150)the Science and Technology Plans of Tianjin (Nos. 19JCQNJC02900, 18ZXJMTG00120,20JCYBJC00120)。
文摘Dye desalination is a challenge in the treatment of textile wastewater with high salt concentration. It is imperative to develop salt resistance membrane that is from sustainable materials to effectively treat dye/salt mixtures. And most polymer membrane materials are non-renewable petrochemical resources.In this paper, a green hydrogel membrane(CMCS-OA-Na Alg) was prepared by non-metallic ions of oxalic acid(OA) cross-linking of two natural macromolecules of sodium alginate(Na Alg) and carboxymethyl chitosan(CMCS). The membrane showed excellent anti-swelling at high salt concentration(swelling rate less than 8.0% in 10.0 wt% Na Cl solution) and good anti-fouling performance. The membrane exhibited a rejection higher than 95.0% for dyes(bright blue, direct black, direct red, and Congo red) and lower than7.0% for Na Cl, which can achieve better dye/Na Cl separation performance. This study provides a promising membrane material for high salt textile wastewater treatment only using water and carbohydrates as raw materials without any organic solvents.