To elucidate the high temperature rheological capability of graphene modified rubber asphalt,three contents of graphene and crumb rubber were prepared by a combination of mechanical agitation and high speed shearing m...To elucidate the high temperature rheological capability of graphene modified rubber asphalt,three contents of graphene and crumb rubber were prepared by a combination of mechanical agitation and high speed shearing machine,then used dynamic shear rheological test(DSR)and multiple stress creep recovery(MSCR)tests to evaluate.The hardness and softening point with rotational viscosity of samples raised with the addition of graphene,especially the addition of 0.04%.Dynamic shear rheological test revealedthat the dynamic shear modulus G*,rutting factor G*/Sin δ,and zero shear viscosity(ZSV)of graphene-modified rubber asphalt were greatly influenced along with graphene-increased,on the contrary,phase angle δ which characterize the viscoelastic ratio of asphalt decreased.Multiple stress creep recovery(MSCR)tests showed that the graphene-enhanced rubber asphalt had high-temperature stability through non-recoverable creep compliance(Jnr).Based on these findings,graphene-modified rubber asphalt binders with the addition of 0.04% graphene had good viscoelastic properties as well as high temperature rutting resistance performance.In the meantime,G*/Sin δ,ZSV,and Jnr100,Jnr3200 have good correlation,which can reveal the excellent high-temperature stability performance of asphalt.展开更多
Pour point depressants (PPD) are used to improve the theology of waxy crude. The affect of various factors on the theological properties, and the thermal characteristics of waxy crude treated by PPD have been invest...Pour point depressants (PPD) are used to improve the theology of waxy crude. The affect of various factors on the theological properties, and the thermal characteristics of waxy crude treated by PPD have been investigated. The conclusions are as follows: PPD can reduce the pour point and abnormal point of waxy crude, broaden the temperature range of Newtonian fluid of waxy crude, and lower greatly the viscosity of non-Newtonian fluid of waxy crude. The influence of reheating and high-rate shear on the effect of PPD mainly depends on their temperature. When the reheating temperature is more than the abnormal point of crude by 10℃, the reheating process has little effect on the modification effect of PPD. However, when the reheating temperature is below the abnormal point of crude, the reheating process will reduce the modification effect of PPD. When temperature is above the abnormal point of crude, the high-rate shear has little effect on the modification effect of PPD. At a temperature range where a lot of wax is precipitating, high-rate shear will greatly reduce the modification effect of PPD.展开更多
We calculate the shear viscosity(η) and bulk viscosity(ζ) to entropy density(s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic gg←→gg forward scattering and the i...We calculate the shear viscosity(η) and bulk viscosity(ζ) to entropy density(s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic gg←→gg forward scattering and the inelastic soft gluon bremsstrahlung gg←→ggg processes. Due to the suppressed contribution to η and ζ in the gg←→gg forward scattering and the effective g←→gg gluon splitting, Arnold, Moore and Yaffe(AMY) and Arnold, Dogan and Moore(ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung gg←→ggg process with an analytic method.We find that the contribution of the collision term from the gg←→ggg soft gluon bremsstrahlung process is just a small perturbation to the gg←→gg scattering process and that the correction is at~ 5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula ζ∝(αs^2 T^3)/(lnαs^-1) in high-temperature gluon plasma.展开更多
文摘To elucidate the high temperature rheological capability of graphene modified rubber asphalt,three contents of graphene and crumb rubber were prepared by a combination of mechanical agitation and high speed shearing machine,then used dynamic shear rheological test(DSR)and multiple stress creep recovery(MSCR)tests to evaluate.The hardness and softening point with rotational viscosity of samples raised with the addition of graphene,especially the addition of 0.04%.Dynamic shear rheological test revealedthat the dynamic shear modulus G*,rutting factor G*/Sin δ,and zero shear viscosity(ZSV)of graphene-modified rubber asphalt were greatly influenced along with graphene-increased,on the contrary,phase angle δ which characterize the viscoelastic ratio of asphalt decreased.Multiple stress creep recovery(MSCR)tests showed that the graphene-enhanced rubber asphalt had high-temperature stability through non-recoverable creep compliance(Jnr).Based on these findings,graphene-modified rubber asphalt binders with the addition of 0.04% graphene had good viscoelastic properties as well as high temperature rutting resistance performance.In the meantime,G*/Sin δ,ZSV,and Jnr100,Jnr3200 have good correlation,which can reveal the excellent high-temperature stability performance of asphalt.
文摘Pour point depressants (PPD) are used to improve the theology of waxy crude. The affect of various factors on the theological properties, and the thermal characteristics of waxy crude treated by PPD have been investigated. The conclusions are as follows: PPD can reduce the pour point and abnormal point of waxy crude, broaden the temperature range of Newtonian fluid of waxy crude, and lower greatly the viscosity of non-Newtonian fluid of waxy crude. The influence of reheating and high-rate shear on the effect of PPD mainly depends on their temperature. When the reheating temperature is more than the abnormal point of crude by 10℃, the reheating process has little effect on the modification effect of PPD. However, when the reheating temperature is below the abnormal point of crude, the reheating process will reduce the modification effect of PPD. When temperature is above the abnormal point of crude, the high-rate shear has little effect on the modification effect of PPD. At a temperature range where a lot of wax is precipitating, high-rate shear will greatly reduce the modification effect of PPD.
基金Supported by Ministry of Science and Technology of China(MSTC)under the"973"Project(2015CB856904(4))National Natural Science Foundation of China(11735007,11521064)
文摘We calculate the shear viscosity(η) and bulk viscosity(ζ) to entropy density(s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic gg←→gg forward scattering and the inelastic soft gluon bremsstrahlung gg←→ggg processes. Due to the suppressed contribution to η and ζ in the gg←→gg forward scattering and the effective g←→gg gluon splitting, Arnold, Moore and Yaffe(AMY) and Arnold, Dogan and Moore(ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung gg←→ggg process with an analytic method.We find that the contribution of the collision term from the gg←→ggg soft gluon bremsstrahlung process is just a small perturbation to the gg←→gg scattering process and that the correction is at~ 5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula ζ∝(αs^2 T^3)/(lnαs^-1) in high-temperature gluon plasma.