A new preparation method of near-net-shape 6.5 wt% Si high silicon steel sheets was proposed by combining composite electrodeposition(CED) and diffusion annealing under magnetic field. The obtained sheets were charact...A new preparation method of near-net-shape 6.5 wt% Si high silicon steel sheets was proposed by combining composite electrodeposition(CED) and diffusion annealing under magnetic field. The obtained sheets were characterized by scanning electron microscopy, energy dispersive spectrometry, analytical balance and a silicon steel material measurement system. The results show that the surface morphology,the elemental distribution, the cathode current efficiency and the silicon content of coatings were obviously influenced by the micro and macro magnetohydrodynamics(MHD) flows under magnetic field.With the effect of magnetic field, the silicon particles content of coatings showed an increasing trend and the diffusion process showed that an approximately uniform 6.5 wt% silicon steel sheet has been successfully obtained. The magnetism measurement showed that the high silicon steel sheet has the lower iron loss, and the iron loss further decreased under magnetic field. The new method proposed in this article,which is more environmentally friendly and low energy consumption, is feasible to prepare high silicon steel sheets.展开更多
Grain-oriented 4.5 wt% Si and 6.5 wt% Si steels were produced by strip casting, warm rolling, cold rolling, primary annealing, and secondary annealing. Goss grains were sufficiently developed and covered the entire su...Grain-oriented 4.5 wt% Si and 6.5 wt% Si steels were produced by strip casting, warm rolling, cold rolling, primary annealing, and secondary annealing. Goss grains were sufficiently developed and covered the entire surface of the secondary recrystallized sheets. The microstructure and texture was characterized by OM, EBSD, TEM, and XRD. It was observed that after rolling at 700 ℃, the 6.5 wt% Si steel exhibited a considerable degree of shear bands, whereas the 4.5 wt% Si steel indicated their rare presence. After primary annealing, completely equiaxed grains showing strong y-fiber texture were presented in both alloys. By comparison, the 6.5 wt% Si steel showed smaller grain size and few favorable Goss grains. Additionally, a higher density of fine precipitates were exhibited in the 6.5 wt% Si steel, leading to a ~ 30-s delay in primary recrystallization. During secondary annealing, abnormal grain growth of the 6.5 wt% Si steel occurred at higher temperature compared to the 4.5 wt% Si steel, and the final grain size of the 6.5 wt% Si steel was greater. The magnetic induction B8 of the 4.5 wt% Si and the 6.5 wt% Si steels was 1.75 and 1.76 T, respectively, and the high- frequency core losses were significantly improved in comparison with the non-oriented high silicon steel.展开更多
In this research,sintering Fe-6.5wt%Si Compact specimen in static magnetic field is proposed for preparing high silicon steel.It is found that the densifications of the compacts are affected remarkably by superimposin...In this research,sintering Fe-6.5wt%Si Compact specimen in static magnetic field is proposed for preparing high silicon steel.It is found that the densifications of the compacts are affected remarkably by superimposing magnetic field.The density of the compacts can be increased when the MFD is higher than 0.2 T.The highest relative density of the samples is 97.2%.The magnetic property of silicon steel could be improved when superimpose static magnetic field in sintering process,the permeability of the compact are two times of that without magnetic field,and the magnetic property parallel to the direction of the magnetic field was evidently higher than that in perpendicular direction.展开更多
The 0.2-0.3mm thick cold-rolled sheets and annealed sheets of high silicon steel were produced by rolling process,then punching tests were carried out at room temperature to 150℃.The punchability and punching fractur...The 0.2-0.3mm thick cold-rolled sheets and annealed sheets of high silicon steel were produced by rolling process,then punching tests were carried out at room temperature to 150℃.The punchability and punching fracture behavior were investigated by means of scanning electron microscope(SEM)and electron back-scattered diffraction(EBSD).It is found that cold-rolled sheets of high silicon steel show good punchability under the condition of 0.01 mm punch-die clearance and at the temperature of 100℃;the punchability of annealed sheets with fine grain size is better than that of annealed sheets with coarse grain size;the punching temperature of 150℃is suitable for annealed high silicon steel sheets especially with coarse grain size on account of punching edge quality.The major cleavage planes of annealed high silicon steel sheets are{100}crystallographic planes on which brittle fracture occurs at low temperatures.The cleavage systems include{100}〈110〉and{100}〈100〉,and cleavage fracture is completed by one or both of them.The punchability of high silicon steel sheets is related with punching temperature,grain size and ordering degree.Reducing ordering degree,increasing punching temperature,as well as refining grain size can improve the ductility and punchability of high silicon steel sheets.展开更多
In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental...In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo) which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250℃ to 400 ℃. The impact toughness is 4-11 J.cm^-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.展开更多
A pulsed Nd:YAG (yttrium aluminum garnet) laser-based technique was employed to clad low silicon steel with preplaced Si and Fe mixed powders for high Si content. The surface morphology, microstructural evolution, ...A pulsed Nd:YAG (yttrium aluminum garnet) laser-based technique was employed to clad low silicon steel with preplaced Si and Fe mixed powders for high Si content. The surface morphology, microstructural evolution, phase composition, and Si distribution, within the obtained cladding coatings, were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), with associated energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness was also measured along the depth direction of the specimens, A crack- and pore-free cladding coating through excellent metallurgical bonding with the substrate was successfully prepared on low silicon steel by means of optimized single-track and multi-track laser cladding. The phases of the coating are a-Fe, T-Fe, and FeSi. The high microhardness of the lasercladding zone is considered as an increase in Si content and as the refined microstructure produced by the laser treatment. The Si contents of the cladding coatings were about 5.8wt% in the single-track cladding and 6.5wt% in the multi-track cladding, respectively.展开更多
The development, production and application of top high-grade non-grain-oriented (NGO) silicon steels at Baosteel were introduced in this paper. Top high grades refer to the highest grades in the intemational silico...The development, production and application of top high-grade non-grain-oriented (NGO) silicon steels at Baosteel were introduced in this paper. Top high grades refer to the highest grades in the intemational silicon steel product standard and above. B35A230 and B50A250 were developed at Baosteel in 2009 and have been used in inverter compressors for air-conditioners, small transformers and big hydropower generators in the Three Gorges project. Small- batch production of B35A210 and B50A230, which exceed the highest grades listed in the intemational silicon steel product standard,began in 2010. That was a breakthrough in the silicon steel making history in China. Presently,Baosteel' s high- grade NGO products have passed the strict qualifications of the three major electric power equipment manufacturers in China and the leading international power equipment suppliers like ALSTOM, GE, SIEMENS, VESTAS, etc. These products are characterized by low iron loss, low anisotropy, good punchability and a high lamination factor. They have been used in the 770 MW hydropower generator at Xiluodu Power Station in the three gorges area, 1 000 MW thermal power generators and 2.5 MW wind power generators.展开更多
This paper summarized recent progress of high silicon grain-oriented and non-oriented electrical steels. Technical development in composition adjustment, inclusion control and process optimization was introduced, and ...This paper summarized recent progress of high silicon grain-oriented and non-oriented electrical steels. Technical development in composition adjustment, inclusion control and process optimization was introduced, and future development trend was explored. In addition, a brief introduction was provided to technical progress of high silicon thingauge strips with a Si content of 6.5%.展开更多
Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is ...Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.展开更多
基金financial support of the National Key Research and Development Program of China(No.2016YFB0300401)the Science and Technology Commission of Shanghai Municipality(Key Project No.13JC1402500,15520711000)the Independent Research and Development Project of State Key of Advanced Special Steel,Shanghai University(Nos.SKLASS2015-Z021 and SELF-2014-02)
文摘A new preparation method of near-net-shape 6.5 wt% Si high silicon steel sheets was proposed by combining composite electrodeposition(CED) and diffusion annealing under magnetic field. The obtained sheets were characterized by scanning electron microscopy, energy dispersive spectrometry, analytical balance and a silicon steel material measurement system. The results show that the surface morphology,the elemental distribution, the cathode current efficiency and the silicon content of coatings were obviously influenced by the micro and macro magnetohydrodynamics(MHD) flows under magnetic field.With the effect of magnetic field, the silicon particles content of coatings showed an increasing trend and the diffusion process showed that an approximately uniform 6.5 wt% silicon steel sheet has been successfully obtained. The magnetism measurement showed that the high silicon steel sheet has the lower iron loss, and the iron loss further decreased under magnetic field. The new method proposed in this article,which is more environmentally friendly and low energy consumption, is feasible to prepare high silicon steel sheets.
基金inancially supported by the National Natural Science Foundation of China(Nos.51174059,51404155,and U1260204)the Fundamental Research Funds for the Central Universities(N130407003)+1 种基金the Program for New Century Excellent Talents in University(NCET-130111)the Program for Liaoning Excellent Talents in University (LR2014007)
文摘Grain-oriented 4.5 wt% Si and 6.5 wt% Si steels were produced by strip casting, warm rolling, cold rolling, primary annealing, and secondary annealing. Goss grains were sufficiently developed and covered the entire surface of the secondary recrystallized sheets. The microstructure and texture was characterized by OM, EBSD, TEM, and XRD. It was observed that after rolling at 700 ℃, the 6.5 wt% Si steel exhibited a considerable degree of shear bands, whereas the 4.5 wt% Si steel indicated their rare presence. After primary annealing, completely equiaxed grains showing strong y-fiber texture were presented in both alloys. By comparison, the 6.5 wt% Si steel showed smaller grain size and few favorable Goss grains. Additionally, a higher density of fine precipitates were exhibited in the 6.5 wt% Si steel, leading to a ~ 30-s delay in primary recrystallization. During secondary annealing, abnormal grain growth of the 6.5 wt% Si steel occurred at higher temperature compared to the 4.5 wt% Si steel, and the final grain size of the 6.5 wt% Si steel was greater. The magnetic induction B8 of the 4.5 wt% Si and the 6.5 wt% Si steels was 1.75 and 1.76 T, respectively, and the high- frequency core losses were significantly improved in comparison with the non-oriented high silicon steel.
基金Item Sponsored by National Natural Science Foundation of China[No.51034010]
文摘In this research,sintering Fe-6.5wt%Si Compact specimen in static magnetic field is proposed for preparing high silicon steel.It is found that the densifications of the compacts are affected remarkably by superimposing magnetic field.The density of the compacts can be increased when the MFD is higher than 0.2 T.The highest relative density of the samples is 97.2%.The magnetic property of silicon steel could be improved when superimpose static magnetic field in sintering process,the permeability of the compact are two times of that without magnetic field,and the magnetic property parallel to the direction of the magnetic field was evidently higher than that in perpendicular direction.
基金Sponsored by National High Technology Research and Development Program of China(2012AA03A505)
文摘The 0.2-0.3mm thick cold-rolled sheets and annealed sheets of high silicon steel were produced by rolling process,then punching tests were carried out at room temperature to 150℃.The punchability and punching fracture behavior were investigated by means of scanning electron microscope(SEM)and electron back-scattered diffraction(EBSD).It is found that cold-rolled sheets of high silicon steel show good punchability under the condition of 0.01 mm punch-die clearance and at the temperature of 100℃;the punchability of annealed sheets with fine grain size is better than that of annealed sheets with coarse grain size;the punching temperature of 150℃is suitable for annealed high silicon steel sheets especially with coarse grain size on account of punching edge quality.The major cleavage planes of annealed high silicon steel sheets are{100}crystallographic planes on which brittle fracture occurs at low temperatures.The cleavage systems include{100}〈110〉and{100}〈100〉,and cleavage fracture is completed by one or both of them.The punchability of high silicon steel sheets is related with punching temperature,grain size and ordering degree.Reducing ordering degree,increasing punching temperature,as well as refining grain size can improve the ductility and punchability of high silicon steel sheets.
基金supported by the National Natural Science Foundation of China(No.50974080)
文摘In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo) which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250℃ to 400 ℃. The impact toughness is 4-11 J.cm^-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.
基金the National Natural Science Foundation of China (No.50474084).
文摘A pulsed Nd:YAG (yttrium aluminum garnet) laser-based technique was employed to clad low silicon steel with preplaced Si and Fe mixed powders for high Si content. The surface morphology, microstructural evolution, phase composition, and Si distribution, within the obtained cladding coatings, were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), with associated energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness was also measured along the depth direction of the specimens, A crack- and pore-free cladding coating through excellent metallurgical bonding with the substrate was successfully prepared on low silicon steel by means of optimized single-track and multi-track laser cladding. The phases of the coating are a-Fe, T-Fe, and FeSi. The high microhardness of the lasercladding zone is considered as an increase in Si content and as the refined microstructure produced by the laser treatment. The Si contents of the cladding coatings were about 5.8wt% in the single-track cladding and 6.5wt% in the multi-track cladding, respectively.
文摘The development, production and application of top high-grade non-grain-oriented (NGO) silicon steels at Baosteel were introduced in this paper. Top high grades refer to the highest grades in the intemational silicon steel product standard and above. B35A230 and B50A250 were developed at Baosteel in 2009 and have been used in inverter compressors for air-conditioners, small transformers and big hydropower generators in the Three Gorges project. Small- batch production of B35A210 and B50A230, which exceed the highest grades listed in the intemational silicon steel product standard,began in 2010. That was a breakthrough in the silicon steel making history in China. Presently,Baosteel' s high- grade NGO products have passed the strict qualifications of the three major electric power equipment manufacturers in China and the leading international power equipment suppliers like ALSTOM, GE, SIEMENS, VESTAS, etc. These products are characterized by low iron loss, low anisotropy, good punchability and a high lamination factor. They have been used in the 770 MW hydropower generator at Xiluodu Power Station in the three gorges area, 1 000 MW thermal power generators and 2.5 MW wind power generators.
文摘This paper summarized recent progress of high silicon grain-oriented and non-oriented electrical steels. Technical development in composition adjustment, inclusion control and process optimization was introduced, and future development trend was explored. In addition, a brief introduction was provided to technical progress of high silicon thingauge strips with a Si content of 6.5%.
基金supported by Swedish Institute of Sweden (No. 200/01954/2007/China Bilateral programme)
文摘Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.