A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable...A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable to increase the applications. Therefore the improvement of workability of 6.5% Si steel sheet was investigated, and the results were obtained as follows: (a) workability of 6.5% Si steel sheet is deteriorated by grain boundary oxidization, (b) grain boundary oxidization can be restrained by the addition of C. Workability and magnetic properties of 6.5% Si steel sheet with C addition are discussed. Furthermore, it was found that the workability of high Si steel sheet was improved remarkably by varying the Si content gradient along the thickness without deterioration of high frequency magnetic properties. This newly developed magnetic gradient high Si steel sheet is also discussed.展开更多
Electrical steel sheets with 6.5%(mas fraction) Si with good shapes and superior magnetic inductions were successfully produced by a specially designed processing route including ingot casting, hot rolling and warm ro...Electrical steel sheets with 6.5%(mas fraction) Si with good shapes and superior magnetic inductions were successfully produced by a specially designed processing route including ingot casting, hot rolling and warm rolling both with interpass thermal treatment, and final annealing. The sheets were of 0.2 mm and 0.3 mm thick over 140 mm width. A detailed study of the microstructural and textural evolutions from the hot rolling to annealing was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction. The hot rolled sheet characterized by near-equiaxed grains was dominated by the mixture of <001>//ND fiber(λ-fiber), <110>//RD fiber(α-fiber) and <111>//ND fiber(γ-fiber) textures owing to the partial recrystallization and strain induced boundary migration(SIBM) during the hot rolling interpass thermal treatment. The static recovery and SIBM during the warm rolling interpass thermal treatment result in large and elongated warm rolling grains. The warm rolling texture is dominated by obvious λ, Goss and strong γ-fiber textures. The application of the interpass thermal treatment during hot and warm rolling significantly enhances the impact of SIBM during annealing, which is responsible for the formation of the moderate λ-fiber, some near-λ fiber texture components and the obviously weakened γ-fiber texture in the annealed sheet, leading to a higher magnetic induction compared to the commercially produced 6.5% Si steel by chemical vapor deposition(CVD).展开更多
文摘A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable to increase the applications. Therefore the improvement of workability of 6.5% Si steel sheet was investigated, and the results were obtained as follows: (a) workability of 6.5% Si steel sheet is deteriorated by grain boundary oxidization, (b) grain boundary oxidization can be restrained by the addition of C. Workability and magnetic properties of 6.5% Si steel sheet with C addition are discussed. Furthermore, it was found that the workability of high Si steel sheet was improved remarkably by varying the Si content gradient along the thickness without deterioration of high frequency magnetic properties. This newly developed magnetic gradient high Si steel sheet is also discussed.
基金Projects(51004035,51374002,50734001)supported by the National Natural Science Foundation of ChinaProject(2012BAE03B00)supported by the National Key Technology R&D Program,China+1 种基金Project(2012AA03A506)supported by the High-tech R&D Program,ChinaProject(N120407009)supported by the Fundamental Research Funds for the Central Universities,China
文摘Electrical steel sheets with 6.5%(mas fraction) Si with good shapes and superior magnetic inductions were successfully produced by a specially designed processing route including ingot casting, hot rolling and warm rolling both with interpass thermal treatment, and final annealing. The sheets were of 0.2 mm and 0.3 mm thick over 140 mm width. A detailed study of the microstructural and textural evolutions from the hot rolling to annealing was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction. The hot rolled sheet characterized by near-equiaxed grains was dominated by the mixture of <001>//ND fiber(λ-fiber), <110>//RD fiber(α-fiber) and <111>//ND fiber(γ-fiber) textures owing to the partial recrystallization and strain induced boundary migration(SIBM) during the hot rolling interpass thermal treatment. The static recovery and SIBM during the warm rolling interpass thermal treatment result in large and elongated warm rolling grains. The warm rolling texture is dominated by obvious λ, Goss and strong γ-fiber textures. The application of the interpass thermal treatment during hot and warm rolling significantly enhances the impact of SIBM during annealing, which is responsible for the formation of the moderate λ-fiber, some near-λ fiber texture components and the obviously weakened γ-fiber texture in the annealed sheet, leading to a higher magnetic induction compared to the commercially produced 6.5% Si steel by chemical vapor deposition(CVD).