Microstructural evolutions of the railway frog steel solidified under different pressure were studied using OM, FEGSEM, and TEM. The influences of pressure on the solidification, grain sizes, and morphology of carbide...Microstructural evolutions of the railway frog steel solidified under different pressure were studied using OM, FEGSEM, and TEM. The influences of pressure on the solidification, grain sizes, and morphology of carbides of the steel were analyzed. It is found that the melting point of the steel increases with the pressure and the solidified microstructure under high pressure does not vary significantly with the melting temperature. The experimental results show that the solidified microstructure consisting of complete equiaxed dendrites is remarkably refined through the increase of pressure, with the mean dendrite arm spacing of about 24, 18, and 8 μm under 3, 6, and 10 GPa, respectively. It is also revealed by TEM observation that the precipitates change from needle-like and rhombic carbide(M3C) forms during normal(atmospheric) pressure solidification into nodulized hexagonal precipitate M7C3 at 3 GPa, and M(23)C6 at 6 GPa and 10 GPa, which is associated with the undercooling and distribution of the trace elements. The diameter of the precipitates is between 80 nm and 200 nm.展开更多
基金Funded by the National Science and Technology Key Project(2011ZX06004-002)the Fundamental Research Funds for the Central Universities(No.YWF-10-01-B20)
文摘Microstructural evolutions of the railway frog steel solidified under different pressure were studied using OM, FEGSEM, and TEM. The influences of pressure on the solidification, grain sizes, and morphology of carbides of the steel were analyzed. It is found that the melting point of the steel increases with the pressure and the solidified microstructure under high pressure does not vary significantly with the melting temperature. The experimental results show that the solidified microstructure consisting of complete equiaxed dendrites is remarkably refined through the increase of pressure, with the mean dendrite arm spacing of about 24, 18, and 8 μm under 3, 6, and 10 GPa, respectively. It is also revealed by TEM observation that the precipitates change from needle-like and rhombic carbide(M3C) forms during normal(atmospheric) pressure solidification into nodulized hexagonal precipitate M7C3 at 3 GPa, and M(23)C6 at 6 GPa and 10 GPa, which is associated with the undercooling and distribution of the trace elements. The diameter of the precipitates is between 80 nm and 200 nm.