期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Novel hierarchical yolk-shell α-Ni(OH)_(2)/Mn_(2)O_(3) microspheres as high specific capacitance electrode materials for supercapacitors
1
作者 Xiqing Luo Miaomiao Jiang +3 位作者 Kun Shi Zhangxian Chen Zeheng Yang Weixin Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2021年第5期1322-1331,共10页
For high performance supercapacitors, novel hierarchical yolk-shell α-Ni(OH)_(2)/Mn_(2)O_(3) microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique ... For high performance supercapacitors, novel hierarchical yolk-shell α-Ni(OH)_(2)/Mn_(2)O_(3) microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique α-Ni(OH)_(2) based yolk-shell microstructures decorated with numerous interconnected nanosheets and the heterocomposition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH− chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the α-Ni(OH)_(2) microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L^(−1) KOH aqueous electrolyte for supercapacitors, the yolk-shell α-Ni (OH)_(2)/Mn_(2)O_(3) microspheres exhibited a considerably high specific capacitance of 2228.6 F·g^(−1) at 1 A·g^(−1) and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g^(−1). The proposed α-Ni(OH)_(2)/Mn_(2)O_(3) microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices. 展开更多
关键词 α-Ni(OH)_(2)/Mn_(2)O_(3) yolk-shell microspheres electrode material high specific capacitance SUPERCAPACITORS
原文传递
Superhydrophilic nickel hydroxide ultrathin nanosheets enable high-performance asymmetric supercapacitors
2
作者 Yi-Ran Wang Fei Zhang +7 位作者 Jian-Min Gu Xiao-Yu Zhao Ran Zhao Xing Wang Tian-Hui Wu Jing Wang Ji-Dong Wang De-Song Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期138-147,共10页
Superhydrophilic surfaces have been applied for supercapacitor;however,during energy storage reaction,how the wettability affects the process of electrochemical reaction specifically is still unclear.Herein,we demonst... Superhydrophilic surfaces have been applied for supercapacitor;however,during energy storage reaction,how the wettability affects the process of electrochemical reaction specifically is still unclear.Herein,we demonstrate superhydrophilic surface for promotion of electrochemical reactions by liquid affinity and further explain the mechanism,where the transition of the wettability state caused by the change in surface free energy is the main reason for the obvious increase in specific capacitance.Through citric acid assistance strategy,an intrinsically hydrophobic Ni(OH)_(2)thick nanosheets(HNHTNs,16 nm)can be transitioned into superhydrophilic Ni(OH)_(2)ultrathin nanosheets(SNHUNs,6.8 nm),where the water contact angle was 0°and the surface free energy increased from 8.6to 65.8 mN·m^(-1),implying superhydrophilicity.Compared with HNHTNs,the specific capacitance of SNHUNs is doubled:from 1230 F·g^(-1)(HNHTNs)to 2350 F·g^(-1)(2A·g^(-1))and,even at 20 A·g^(-1),from 833 F·g^(-1)(HNHTNs)to 1670 F·g^(-1).The asymmetric capacitors assembled by SNHUNs and activated carbon show 52.44 Wh·kg^(-1)at 160W·kg^(-1)and excellent stability with~90%retention after5000 cycles(~80%retention after 9500 cycles).The promotion of electrochemical performances is ascribed to the change of surface wettability caused by surface free energy,which greatly increase affinity of electrode to the surrounding liquid environment to reduce the interface resistance and optimize the electron transport path. 展开更多
关键词 Asymmetric supercapacitor Superhydrophilic interface Transition metal hydroxides Ultrathin nanosheets high specific capacitance
原文传递
N,P-codoped porous carbon derived from chitosan with hierarchical N-enriched structure and ultra-high specific surface Area toward high-performance supercapacitors 被引量:3
3
作者 Xipeng Xin Na Song +8 位作者 Ruiming Jia Bingnan Wang Hongzhou Dong Shuai Ma Lina Sui Yingjie Chen Qian Zhang Lifeng Dong Liyan Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第29期45-55,共11页
In this work,a facile"carbonization-activation"strategy is developed to synthesize N,P-codoped hierarchical porous carbon.Phosphoric acid is innovatively introduced during the hydrothermal process to achieve... In this work,a facile"carbonization-activation"strategy is developed to synthesize N,P-codoped hierarchical porous carbon.Phosphoric acid is innovatively introduced during the hydrothermal process to achieve in-situ P doping as well as create abundant pores,and the employment of sodamide is of vital importance to simultaneously serve as activating agent and N-source to succeed a high-level N doping.Thus,the obtained samples exhibit a unique three-dimensional hierarchical structure with an ultra-high specific surface area(3646 m^(2)g^(-1))and ultra-high N-doping level(9.81 at.%).Computational analyses confirm that N,P co-doping and higher N content can enhance active sites and widen potential differences of carbon materials to improve their capacitance.The as-prepared carbon materials demonstrate superior electrochemical performances,such as an ultra-high capacitance of 586 Fg^(-1)at 1 Ag^(-1),a superior rate capability of 409 Fg^(-1)at 20 Ag^(-1),and excellent long-term stability of 97%capacitance retention after10,000 cycles in 6 M KOH.Moreover,an assembled symmetric supercapacitor delivers a high energy density of 28.1 Wh kg^(-1)at the power density of 450 W kg^(-1)in 1 M Na_(2)SO_(4),demonstrating a great potential for applications in supercapacitors. 展开更多
关键词 facile and cost-effective strategy Ultra-high specific surface area high-level heteroatoms doping high specific capacitance
原文传递
Characterization of porous cobalt hexacyanoferrate and activated carbon electrodes under dynamic polarization conditions in a sodium-ion pseudocapacitor 被引量:1
4
作者 Bruno Morandi Pires Willian Goncalves Nunes +5 位作者 Bruno Guilherme Freitas Francisca Elenice Rodrigues Oliveira Vera Katic Cristiane Barbieri Rodella Leonardo Morais Da Silva Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期53-62,共10页
We report here the activated carbon and cobalt hexacyanoferrate composite,which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na_(2)SO_(4) aqueous electrolyte.This novel materia... We report here the activated carbon and cobalt hexacyanoferrate composite,which is applied as the electrode materials in symmetric supercapacitors containing a 1.0 M Na_(2)SO_(4) aqueous electrolyte.This novel material combines high specific surface area and electrochemical stability of activated carbon with the redox properties of cobalt hexacyanoferrate,resulting in maximum specific capacitance of 329 F g^(-1) with large voltage working window of 2.0 V.Electrochemical studies indicated that cobalt hexacyanoferrate introduces important pseudocapacitive properties accounting for the overall charge-storage process,especially when I<0.5 A g^(-1).At lower gravimetric currents(e.g.,0.05 A g^(-1))and up to 1.0 V,the presence of cobalt hexacyanoferrate improves the specific energy for more than 300%.In addition,to better understanding the energy storage process we also provided a careful investigation of the electrode materials under dynamic polarization conditions using the in situ Raman spectroscopy and synchrotron light Xray diffraction techniques.Interesting complementary findings were obtained in these studies.We believe that this novel electrode material is promising for applications regarding the energy-storage process in pseudocapacitors with long lifespan properties. 展开更多
关键词 Operando studies RAMAN XRD synchrotron light Cobalt hexacyanoferrate Activated carbon high specific capacitance
下载PDF
Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors 被引量:2
5
作者 Meng Zhou Sheng-Xue Yan +6 位作者 Qing Wang Ming-Xiu Tan Deng-Yang Wang Zi-Qi Yu Shao-Hua Luo Ya-Hui Zhang Xin Liu 《Rare Metals》 SCIE EI CAS CSCD 2022年第7期2280-2291,共12页
The conversion of biomass waste into eco-nomical and high-performance energy storage devices receives significant attention.Herein,a facile and green method to prepare porous active carbon from walnut sep-tum is appli... The conversion of biomass waste into eco-nomical and high-performance energy storage devices receives significant attention.Herein,a facile and green method to prepare porous active carbon from walnut sep-tum is applied to the electrode materials of supercapacitors.The effect of chemical etching reagent(KOH)on the microstructure and specific capacitance of the porous car-bon are explored.The modified BC-2.0,with a KOH/walnut septum mass ratio of 2∶1,exhibits large specific surface area of 1003.9 m^(2)·g^(-1)with hierarchical micro-mesoporous structures.BC-2.0 reveals a superior specific capacitance of 457 F·g^(-1)at 1 A·g^(-1).The flexible sym-metric supercapacitor in gel electrolyte(KOH/PVA)exhi-bits considerable synergetic energy-power output performance.The results indicate that walnut septum is a better precursor to obtain activated carbons relative to other biomass carbon sources.The large mesoporosity after activation effectively boosts the electrochemical properties of supercapacitor.Consequently,the walnut septum has potential to be a superior electrode material for supercapacitors. 展开更多
关键词 ACTIVATION Biocarbon Micro-mesoporous structure SUPERCAPACITOR high specific capacitance
原文传递
High-performance aqueous asymmetric supercapacitors based on the cathode of one-step electrodeposited cracked bark-shaped nickel manganese sulfides on activated carbon cloth 被引量:2
6
作者 ADIL Emin XIE WenLu +7 位作者 LONG Xiao WANG Xiao SONG XiaoQiang CHEN Yue FU YuJun LI JunShuai LI YaLi HE DeYan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第2期293-301,共9页
In this work,we report a high-performance self-standing supercapacitor electrode of mixed nickel manganese sulfides (NMSs)with a cracked-bark shape grown by one-step electrochemical deposition on activated carbon clot... In this work,we report a high-performance self-standing supercapacitor electrode of mixed nickel manganese sulfides (NMSs)with a cracked-bark shape grown by one-step electrochemical deposition on activated carbon cloth (ACC).The electrode possesses outstanding electrochemical properties,including a high specific capacitance of up to 3142.8 F g^(-1)at 1.0 A g^(-1),the high-rate performance (~1206.8 F g^(-1)at 60.0 A g^(-1)),and cycle stability (~92.3%capacitance retention after 8000 cycles at8 A g^(-1)).An asymmetric supercapacitor assembled using NMSs on ACC as the cathode,activated carbon on carbon cloth as the anode and 1.0 mol L;KOH as the electrolyte delivers a high energy density of 111.2 W h kg^(-1)at 800.0 W kg^(-1)and the prominent cycling performance of~93.2%capacitance retention after 10000 cycles at 5 A g^(-1)with the Columbic efficiency of around 100%during these 10000 cycles.The high performance and facile preparation indicate that the NMSs on ACC hold a huge potential as the electrode for supercapacitors. 展开更多
关键词 aqueous asymmetric supercapacitors nickel manganese sulphides high specific capacitance high energy density long cycle stability
原文传递
PVA-assisted hydrated vanadium pentoxide/reduced graphene oxide films for excellent Li^(+)and Zn^(2+)storage properties
7
作者 Tao Hu Jingjing Sun +6 位作者 Yifu Zhang Yanyan Liu Hanmei Jiang Xueying Dong Jiqi Zheng Changgong Meng Chi Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第24期7-17,共11页
Low-cost,high safety and environment-friendly aqueous energy storage systems(ESSs)are huge potential for grid-level energy storage,but the(de)intercalation of metal ions in the electrode materials(e.g.vanadium oxides)... Low-cost,high safety and environment-friendly aqueous energy storage systems(ESSs)are huge potential for grid-level energy storage,but the(de)intercalation of metal ions in the electrode materials(e.g.vanadium oxides)to obtain superior long-term cycling stability is a significant challenge.Herein,we demonstrate that polyvinyl alcohol(PVA)-assisted hydrated vanadium pentoxide/reduced graphene oxide(V_(2)O_(5)·n H_(2)O/r GO/PVA,denoted as the VGP)films enable long cycle stability and high capacity for the Li^(+)and Zn^(2+)storages in both the VGP//Li Cl(aq)//VGP and the VGP//Zn SO4(aq)//Zn cells.The binderfree VGP films are synthesized by a one-step hydrothermal method combination with the filtration.The extensive hydrogen bonds are formed among PVA,GO and H_(2)O,and they act as structural pillars and connect the adjacent layers as glue,which contributes to the ultrahigh specific capacitance and ultralong cyclic performance of Li^(+)and Zn^(2+)storage properties.As for Li^(+)storage,the binder-free VGP4 film(4mg PVA)electrode achieves the highest specific capacitance up to 1381 F g^(-1)at 1.0 A g^(-1)in the three-electrode system and 962 F g^(-1)at 1.0 A g^(-1)in the symmetric two-electrode system.It also behaves the outstanding cyclic performance with the capacitance retention of 96.5%after 15000 cycles in the three-electrode system and 99.7%after 25000 cycles in the symmetric two-electrode system.As for Zn^(2+)storage,the binder-free VGP4 film electrode exhibits the high specific capacity of 184 m A h g^(-1)at 0.5A g^(-1)in the VGP4//Zn SO4(aq)//Zn cell and the superb cycle performance of 98.5%after 25000 cycles.This work not only provides a new strategy for the construction of vanadium oxides composites and demonstrates the potential application of PVA-assisted binder-free film with excellent electrochemical properties,but also extends to construct other potential electrode materials for metal ion storage cells. 展开更多
关键词 V_(2)O_(5)·nH_(2)O/rGO/PVA film Li+storage Zn^(2+)storage high specific capacitance Outstanding cycle performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部