The influence of multipass high rotating speed friction stir processing(FSP)on the microstructure evolution,corrosion behavior,and tensile properties of the stirred zone(SZ)was investigated by EBSD,TEM,SEM,electrochem...The influence of multipass high rotating speed friction stir processing(FSP)on the microstructure evolution,corrosion behavior,and tensile properties of the stirred zone(SZ)was investigated by EBSD,TEM,SEM,electrochemical workstation and electronic universal testing machine.The mean grain size of the SZ is significantly refined,and it increases with the increase of the processing pass.In addition to an obvious increase in the number,the distribution ofβ-Al12Mg17 precipitates also becomes more uniform and dispersed with increasing the processing pass.Compared with the as-received AZ31 alloy,the tensile properties of the SZ are hardly improved,but the corrosion resistances are significantly enhanced.The corrosion potential of the SZ prepared by 4-pass FSP is increased from−1.56 V for the unprocessed AZ31 alloy to−1.19 V,while the corrosion current is decreased from 1.55×10^−4 to 5.47×10^−5 A.展开更多
Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The r...Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.展开更多
In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of d...In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of droplet transfer simultaneously, which is based on a self-developed soft-switching inverter. On the one hand, welding current and voltage signals are acquired and analyzed by a self-developed dynamic wavelet analyzer. On the other hand, images are filtered and optimized after they are captured by high-speed camera. The results show that instantaneous waveforms and statistical data of electrical signal contribute to make an overall assessment of welding quality, and that optimized high-speed images allow a visual and clear observation of droplet transfer process. The analysis of both waveforms and images leads to a further research on droplet transfer mechanism and provides a basis for precise control of droplet transfer.展开更多
A high speed and low power Viterbi decoder architecture design based on deep pipelined, clock gating and toggle filtering has been presented in this paper. The Add-Compare-Select (ACS) and Trace Back (TB) units and it...A high speed and low power Viterbi decoder architecture design based on deep pipelined, clock gating and toggle filtering has been presented in this paper. The Add-Compare-Select (ACS) and Trace Back (TB) units and its sub circuits of the decoder have been operated in deep pipelined manner to achieve high transmission rate. The Power dissipation analysis is also investigated and compared with the existing results. The techniques that have been employed in our low-power design are clock-gating and toggle filtering. The synthesized circuits are placed and routed in the standard cell design environment and implemented on a Xilinx XC2VP2fg256-6 FPGA device. Power estimation obtained through gate level simulations indicated that the proposed design reduces the power dissipation of an original Viterbi decoder design by 68.82% and a speed of 145 MHz is achieved.展开更多
Geospatial technology is a useful tool when identifying land corridors for transportation networks. The primary transit corridor between Los Angeles, CA and Las Vegas, NV is Interstate-15, approximately a four-hour au...Geospatial technology is a useful tool when identifying land corridors for transportation networks. The primary transit corridor between Los Angeles, CA and Las Vegas, NV is Interstate-15, approximately a four-hour automobile trip without traffic. Virgin Trains USA LLC proposes an alternative means of travel by constructing a high-speed railway along Interstate-15 connecting Las Vegas and Victorville, CA. This study uses least-cost path analysis to propose an optimized alternative corridor for Virgin Trains’ proposed high-speed railway through a system facilitated road and rail accessibility analysis. Previous research using least-cost path and accessibility methodologies evaluated the results of proposed high-speed railway corridors and the system facilitated accessibility changes by visually inspecting deviations from a planned corridor using single or multiple cost criteria as inputs for a weighted cost surface. However, robust analyses of previous least-cost path studies’ corridors are lacking. This proof-in-concept study proposes a less costly corridor through least-cost path analysis and measures the social impact on the stakeholders of a high-speed railway transportation system through system facilitated accessibility. This study’s proposed alternative corridor is 31% shorter than Virgin Trains’ planned corridor and system facilitated accessibility to Las Vegas, NV is increased in 99.74% of Los Angeles County’s census tracts. These results support this study’s position that geospatial technology can support transportation planning in a comprehensive method that considers the transportation corridor and benefits its stakeholders.展开更多
Objective: To demonstrate that high IQ children and adolescents diagnosed with ADHD tend to suffer from executive function (EF) impairments that: a) can be identified with a combination of standardized measures and no...Objective: To demonstrate that high IQ children and adolescents diagnosed with ADHD tend to suffer from executive function (EF) impairments that: a) can be identified with a combination of standardized measures and normed self-report data;and b) occur more frequently in this group than in the general population. Method: From charts of 117 children and adolescents aged 6 to 17 years with high IQ ( ≥ 120) who fully met DSM-IV diagnostic criteria for ADHD, data on 8 normed measures of executive function (EF) were extracted: IQ index scores for working memory and processing speed, a standardized measure of auditory verbal memory, and 5 clusters of the Brown ADD Scale, a normed, age-graded rating scale for ADHD-related executive function impairments in daily life. Significant impairment was computed for each individual relative to age-appropriate norms for each measure and comparisons were made to base-line rates in the general population. Results: Sixty-two percent of participants were significantly impaired on at least 5 of these 8 markers of EF. Chi-square comparisons of scores from these high IQ participants were significantly different (p < 0.001) from standardization norms for each of the eight EF measures. Conclusions: High IQ children and adolescents with ADHD, despite their cognitive strengths, tend to suffer from significant impairments of executive functions that can be assessed with these measures;incidence of these impairments is significantly greater than in the general population. These results are fully consistent with data on high IQ adults diagnosed with ADHD.展开更多
The paper first discusses shortcomings of classical adjacent-frame difference. Sec ondly, based on the image energy and high order statistic(HOS) theory, background reconstruction constraints are setup. Under the help...The paper first discusses shortcomings of classical adjacent-frame difference. Sec ondly, based on the image energy and high order statistic(HOS) theory, background reconstruction constraints are setup. Under the help of block-processing technology, background is reconstructed quickly. Finally, background difference is used to detect motion regions instead of adjacent frame difference. The DSP based platform tests indicate the background can be recovered losslessly in about one second, and moving regions are not influenced by moving target speeds. The algorithm has important usage both in theory and applications.展开更多
Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation betwe...Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation between catenary faults and meteorological conditions, and further the effect of meteorological conditions on catenary oper-ation. Moreover, machine learning is used for catenary fault prediction. As with the single decision tree, only a small number of training samples can be classified cor-rectly by each weak classifier, the AdaBoost algorithm is adopted to adjust the weights of misclassified samples and weak classifiers, and train multiple weak classifiers. Finally, the weak classifiers are combined to construct a strong classifier, with which the final prediction result is obtained. In order to validate the prediction method, an example is provided based on the historical data from a railway bureau of China. The result shows that the mapping relation between meteorological conditions and catenary faults can be established accurately by AdaBoost algorithm. The AdaBoost algorithm can accurately predict a catenary fault if the meteorological conditions are provided.展开更多
Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of v...Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.展开更多
Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to deve...Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.展开更多
This paper presents main functions of a high voltage,high speed and extensive memory transient measurementequipment and design of associate hardware and software. Thepaper also introduces the hardware design of high s...This paper presents main functions of a high voltage,high speed and extensive memory transient measurementequipment and design of associate hardware and software. Thepaper also introduces the hardware design of high speed hugememory data sampler, explains the know-how of data analysissoftware, program-controlled voltage divider andanti-interference measurement, with which the equipmentperforms excellent on--site.This equipment reallies automatic measurement and satisfiesthe requirement of high voltage digital measurment.展开更多
基金Projects(51861034,51601167)supported by the National Natural Science Foundation of ChinaProject(2020GY-262)supported by the Science and Technology Department of Shaanxi Province,China+1 种基金Project(2019-86-1)supported by the Technology Bureau of Yulin,ChinaProject(20GK06)supported by the High-level Talent Program of Yulin University,China。
文摘The influence of multipass high rotating speed friction stir processing(FSP)on the microstructure evolution,corrosion behavior,and tensile properties of the stirred zone(SZ)was investigated by EBSD,TEM,SEM,electrochemical workstation and electronic universal testing machine.The mean grain size of the SZ is significantly refined,and it increases with the increase of the processing pass.In addition to an obvious increase in the number,the distribution ofβ-Al12Mg17 precipitates also becomes more uniform and dispersed with increasing the processing pass.Compared with the as-received AZ31 alloy,the tensile properties of the SZ are hardly improved,but the corrosion resistances are significantly enhanced.The corrosion potential of the SZ prepared by 4-pass FSP is increased from−1.56 V for the unprocessed AZ31 alloy to−1.19 V,while the corrosion current is decreased from 1.55×10^−4 to 5.47×10^−5 A.
文摘Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.
基金This work was supported by National Natural Science Foundation of China ( No. 50875088) Natural Science Foundation of Guangdong Province, China ( No. 07006479).
文摘In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of droplet transfer simultaneously, which is based on a self-developed soft-switching inverter. On the one hand, welding current and voltage signals are acquired and analyzed by a self-developed dynamic wavelet analyzer. On the other hand, images are filtered and optimized after they are captured by high-speed camera. The results show that instantaneous waveforms and statistical data of electrical signal contribute to make an overall assessment of welding quality, and that optimized high-speed images allow a visual and clear observation of droplet transfer process. The analysis of both waveforms and images leads to a further research on droplet transfer mechanism and provides a basis for precise control of droplet transfer.
文摘A high speed and low power Viterbi decoder architecture design based on deep pipelined, clock gating and toggle filtering has been presented in this paper. The Add-Compare-Select (ACS) and Trace Back (TB) units and its sub circuits of the decoder have been operated in deep pipelined manner to achieve high transmission rate. The Power dissipation analysis is also investigated and compared with the existing results. The techniques that have been employed in our low-power design are clock-gating and toggle filtering. The synthesized circuits are placed and routed in the standard cell design environment and implemented on a Xilinx XC2VP2fg256-6 FPGA device. Power estimation obtained through gate level simulations indicated that the proposed design reduces the power dissipation of an original Viterbi decoder design by 68.82% and a speed of 145 MHz is achieved.
文摘Geospatial technology is a useful tool when identifying land corridors for transportation networks. The primary transit corridor between Los Angeles, CA and Las Vegas, NV is Interstate-15, approximately a four-hour automobile trip without traffic. Virgin Trains USA LLC proposes an alternative means of travel by constructing a high-speed railway along Interstate-15 connecting Las Vegas and Victorville, CA. This study uses least-cost path analysis to propose an optimized alternative corridor for Virgin Trains’ proposed high-speed railway through a system facilitated road and rail accessibility analysis. Previous research using least-cost path and accessibility methodologies evaluated the results of proposed high-speed railway corridors and the system facilitated accessibility changes by visually inspecting deviations from a planned corridor using single or multiple cost criteria as inputs for a weighted cost surface. However, robust analyses of previous least-cost path studies’ corridors are lacking. This proof-in-concept study proposes a less costly corridor through least-cost path analysis and measures the social impact on the stakeholders of a high-speed railway transportation system through system facilitated accessibility. This study’s proposed alternative corridor is 31% shorter than Virgin Trains’ planned corridor and system facilitated accessibility to Las Vegas, NV is increased in 99.74% of Los Angeles County’s census tracts. These results support this study’s position that geospatial technology can support transportation planning in a comprehensive method that considers the transportation corridor and benefits its stakeholders.
文摘Objective: To demonstrate that high IQ children and adolescents diagnosed with ADHD tend to suffer from executive function (EF) impairments that: a) can be identified with a combination of standardized measures and normed self-report data;and b) occur more frequently in this group than in the general population. Method: From charts of 117 children and adolescents aged 6 to 17 years with high IQ ( ≥ 120) who fully met DSM-IV diagnostic criteria for ADHD, data on 8 normed measures of executive function (EF) were extracted: IQ index scores for working memory and processing speed, a standardized measure of auditory verbal memory, and 5 clusters of the Brown ADD Scale, a normed, age-graded rating scale for ADHD-related executive function impairments in daily life. Significant impairment was computed for each individual relative to age-appropriate norms for each measure and comparisons were made to base-line rates in the general population. Results: Sixty-two percent of participants were significantly impaired on at least 5 of these 8 markers of EF. Chi-square comparisons of scores from these high IQ participants were significantly different (p < 0.001) from standardization norms for each of the eight EF measures. Conclusions: High IQ children and adolescents with ADHD, despite their cognitive strengths, tend to suffer from significant impairments of executive functions that can be assessed with these measures;incidence of these impairments is significantly greater than in the general population. These results are fully consistent with data on high IQ adults diagnosed with ADHD.
文摘The paper first discusses shortcomings of classical adjacent-frame difference. Sec ondly, based on the image energy and high order statistic(HOS) theory, background reconstruction constraints are setup. Under the help of block-processing technology, background is reconstructed quickly. Finally, background difference is used to detect motion regions instead of adjacent frame difference. The DSP based platform tests indicate the background can be recovered losslessly in about one second, and moving regions are not influenced by moving target speeds. The algorithm has important usage both in theory and applications.
基金supported by the Scientific and Technological Research and Development Program of China Railway Corporation under Grant N2018G023by the Science and Technology Projects of Sichuan Province under Grants 2018RZ0075
文摘Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation between catenary faults and meteorological conditions, and further the effect of meteorological conditions on catenary oper-ation. Moreover, machine learning is used for catenary fault prediction. As with the single decision tree, only a small number of training samples can be classified cor-rectly by each weak classifier, the AdaBoost algorithm is adopted to adjust the weights of misclassified samples and weak classifiers, and train multiple weak classifiers. Finally, the weak classifiers are combined to construct a strong classifier, with which the final prediction result is obtained. In order to validate the prediction method, an example is provided based on the historical data from a railway bureau of China. The result shows that the mapping relation between meteorological conditions and catenary faults can be established accurately by AdaBoost algorithm. The AdaBoost algorithm can accurately predict a catenary fault if the meteorological conditions are provided.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20204007,50390090,20490220,10590355)the Doctoral Foundation of National Education Committee of China(No.20030248008)the 863 Project of China(No.2002AA336120).
文摘Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.
文摘Be directed against the development trend of modern CNC grinding machine towards high precision and high efficiency, some general weaknesses of existing camber grinding machine are analyzed in detail. In order to develop new type CNC camber grinding machine that can grind complex die, and genuinely achieved accurate feed and high efficient grinding, a new type camber grinding machine is put forward, called non-transmission virtual-shaft CNC camber grinding machine. Its feed system is a parallel mechanism that is directly driven by linear step motor. Therefore, traditional transmission types, such as the ball lead-screw mechanisms, the gears, the hydraulic transmission system, etc. are cancelled, and the feed system of new type CNC camber grinding machine can truly possess non-creep, good accuracy retentiveness a wide range of feed-speed change, high kinematical accuracy and positioning precision, etc. In order to realize that the cutting motion is provided with high grinding speed, step-less speed variation, high rotational accuracy, good dynamic performance, and non-transmission, the driving technology of hollow rotor motor is applied to drive the spindle of new type grinding machine,thus leading to the elimination of the transmission parts of cutting motion. The principle structure model of new type camber grinding machine is advanced. The selection, control gist and driving circuit line of the linear step motor are expounded. The main technology characteristics and application advantages of non-transmission virtual-shaft CNC camber grinding machine are introduced.
文摘This paper presents main functions of a high voltage,high speed and extensive memory transient measurementequipment and design of associate hardware and software. Thepaper also introduces the hardware design of high speed hugememory data sampler, explains the know-how of data analysissoftware, program-controlled voltage divider andanti-interference measurement, with which the equipmentperforms excellent on--site.This equipment reallies automatic measurement and satisfiesthe requirement of high voltage digital measurment.