The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters co...The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.展开更多
Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The ...Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains.展开更多
Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsin high speed impact resista...Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsin high speed impact resistance ( HSIR) steel. According tothese va lenceelectron structure parametersitis deduced thatthe alloying elements of high propertyHSIRsteelshould be Mn, Cr, Ni and Mo. The microscopicstructure ofthesteel with this compositionisthe mixtureof martensite, bainiteand austeniteafter quenching andlow tem peraturetempering.Itspropertiesare:σb = 1750 MPa,σ0 2 = 1460 MPa,δ5 = 12 7 % , AKV(at 40 ℃, cross direction) = 21J, which exceed the requirement of design. For the thick plateof high property HSIRsteel,itissuggestedto add alittleamountof Cu on thebasisofabovecomposition .展开更多
Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parame...Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.展开更多
The paper puts forward a method of predicting the calm water total resistance of the high speed displacement ship with transom stern.The hull surface is defined by mathematical function and design parameters.The effec...The paper puts forward a method of predicting the calm water total resistance of the high speed displacement ship with transom stern.The hull surface is defined by mathematical function and design parameters.The effects of design parameters on the total resistance are discussed.展开更多
On the basis of deep investigation of locomotive traction gears manufactured at home and abroad , a variety of measures are putted forward to improve the driving load-bearing capacity and working life of our country...On the basis of deep investigation of locomotive traction gears manufactured at home and abroad , a variety of measures are putted forward to improve the driving load-bearing capacity and working life of our country's high-speed locomotive traction gears. The measures include the fol- lowing five aspects : optimally selecting the material and heat treatment process , optimally designing the tooth profile . reasonably choosing the manufacture accuracy and technique , optimally choosing the lubricant and the way of lubrication and seal , improving the dynamic feature of the gearing. In the respect of the tooth profile , a hob with optimal cutter angles is designed to make root thickness on the dangerous section as large as possible and the stress concentration as small as possible. Ad- dendum modification coefficient is optimized to minimize the maximum flash temperature in the course of meshing. Finally . finite element analysis method is used to calculate the deformation and the stress of teeth accurately. And on this basis , optimal profile correction and axial modification have been designed with regard to the start , continuious running and high speed travel of the loco- motive .展开更多
In this article, the features of design and construction of Qinhuangdao Shenyang passenger special line in railroad foundation, tracks, and bridges are described as an emphasis, the reasons for success are analyzed, a...In this article, the features of design and construction of Qinhuangdao Shenyang passenger special line in railroad foundation, tracks, and bridges are described as an emphasis, the reasons for success are analyzed, and the recommendations to tackle the exiting issues are presented as the reference in high speed railway construction.展开更多
The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendati...The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.展开更多
This paper studies the title problem including an analysis of the gyroscopic effects of the wheels of a rail-car travelling at high-speed around a level, horizontal curve. The analysis is based upon the fundamental pr...This paper studies the title problem including an analysis of the gyroscopic effects of the wheels of a rail-car travelling at high-speed around a level, horizontal curve. The analysis is based upon the fundamental principles of dynamics. The result is a design formula for the minimum curve radius needed to prevent derailment. Aside from the rail car geometric and physical properties, the minimum curve radius depends upon the square the train speed. An illustrative example shows that the wheel gyroscopic effect is destabilizing and additive to the centrifugal force derailment tendency. From a track design perspective, however, the gyroscopic effect is relatively small compared with the centrifugal force effect.展开更多
基金supported by the National Natural Science Foundation of China (No. 51008258)the Fundamental Research Funds for the Central Universities (No. SWJTU09BR038)
文摘The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.
基金supported by the National Key Technology R&D Program of China (Grant 2013BAG22Q00)the China Railway Science and Technology R&D Program (2015J009-D)
文摘Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
文摘Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsin high speed impact resistance ( HSIR) steel. According tothese va lenceelectron structure parametersitis deduced thatthe alloying elements of high propertyHSIRsteelshould be Mn, Cr, Ni and Mo. The microscopicstructure ofthesteel with this compositionisthe mixtureof martensite, bainiteand austeniteafter quenching andlow tem peraturetempering.Itspropertiesare:σb = 1750 MPa,σ0 2 = 1460 MPa,δ5 = 12 7 % , AKV(at 40 ℃, cross direction) = 21J, which exceed the requirement of design. For the thick plateof high property HSIRsteel,itissuggestedto add alittleamountof Cu on thebasisofabovecomposition .
基金Projects(51425804,51378439,51608459)supported by the National Natural Science Foundation of ChinaProjects(U1334203,U1234201)supported by the Key Project of the China’s High-Speed Railway United Fund+1 种基金Project(2016M590898)supported by China Postdoctoral Science FoundationProject(2014GZ0009)supported by Sichuan Provinial Science and Technology support Program,China
文摘Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.
文摘The paper puts forward a method of predicting the calm water total resistance of the high speed displacement ship with transom stern.The hull surface is defined by mathematical function and design parameters.The effects of design parameters on the total resistance are discussed.
文摘On the basis of deep investigation of locomotive traction gears manufactured at home and abroad , a variety of measures are putted forward to improve the driving load-bearing capacity and working life of our country's high-speed locomotive traction gears. The measures include the fol- lowing five aspects : optimally selecting the material and heat treatment process , optimally designing the tooth profile . reasonably choosing the manufacture accuracy and technique , optimally choosing the lubricant and the way of lubrication and seal , improving the dynamic feature of the gearing. In the respect of the tooth profile , a hob with optimal cutter angles is designed to make root thickness on the dangerous section as large as possible and the stress concentration as small as possible. Ad- dendum modification coefficient is optimized to minimize the maximum flash temperature in the course of meshing. Finally . finite element analysis method is used to calculate the deformation and the stress of teeth accurately. And on this basis , optimal profile correction and axial modification have been designed with regard to the start , continuious running and high speed travel of the loco- motive .
文摘In this article, the features of design and construction of Qinhuangdao Shenyang passenger special line in railroad foundation, tracks, and bridges are described as an emphasis, the reasons for success are analyzed, and the recommendations to tackle the exiting issues are presented as the reference in high speed railway construction.
基金Supported by National Natural Science Foundation of China(Grant No.11572267)Sichuan Science and Technology Program(Grant No.2017JY0216)+1 种基金Open Research Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China(Grant No.SV2016-KF-21)Open Research Project of State Key Laboratory of Traction Power of China(Grant No.2018TPL_T03)
文摘The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.
文摘This paper studies the title problem including an analysis of the gyroscopic effects of the wheels of a rail-car travelling at high-speed around a level, horizontal curve. The analysis is based upon the fundamental principles of dynamics. The result is a design formula for the minimum curve radius needed to prevent derailment. Aside from the rail car geometric and physical properties, the minimum curve radius depends upon the square the train speed. An illustrative example shows that the wheel gyroscopic effect is destabilizing and additive to the centrifugal force derailment tendency. From a track design perspective, however, the gyroscopic effect is relatively small compared with the centrifugal force effect.