期刊文献+
共找到3,082篇文章
< 1 2 155 >
每页显示 20 50 100
Unveiling the underlying mechanism of forming edge cracks upon high strain-rate rolling of magnesium alloy 被引量:5
1
作者 Biwu Zhu Xiao Liu +4 位作者 Chao Xie Jing Su Pengcheng Guo Changping Tang Wenhui Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第15期59-65,共7页
In the current study,high strain-rate rolling(≥10 s-1) has been successfully employed to produce Mg-3 A1-1 Zn alloy sheets to a high reduction of 82% with a fine grain structure in a single pass.The underlying mechan... In the current study,high strain-rate rolling(≥10 s-1) has been successfully employed to produce Mg-3 A1-1 Zn alloy sheets to a high reduction of 82% with a fine grain structure in a single pass.The underlying mechanism of forming primary and secondary edge cracks has been investigated.It is found that dynamic recrystallization(DRX) induced by subgrains tends to blunt cracks,while twinning-induced D RX is mainly observed around sharp crack tips.The motion of emitted dislocations from blunted cracks is inhibited by the DRX grain boundaries.This,on one hand,increases local work hardening,and on the other hand,causes stress concentration alo ng grain boundaries especially in the triple junctions leading to the formation of secondary cracks. 展开更多
关键词 Edge crack Secondary crack high strain-rate rolling AZ31 magnesium alloy Dynamic recrystallization
原文传递
Effects of Calcium and Yttrium on Microstructure and Mechanical Properties of High Strain-Rate Rolled AZ91D Magnesium Alloy
2
作者 SHEN Yanjin 《Journal of Donghua University(English Edition)》 EI CAS 2018年第2期149-153,共5页
Effects of calcium( Ca) and yttrium( Y) on microstructure and mechanical properties of high strain-rate rolled AZ91 D magnesium alloy were studied. High strain-rate rolling can improve the strength and plasticity of m... Effects of calcium( Ca) and yttrium( Y) on microstructure and mechanical properties of high strain-rate rolled AZ91 D magnesium alloy were studied. High strain-rate rolling can improve the strength and plasticity of magnesium alloy sheets.Additions of Ca and Y into AZ91 D can refine grains and modify the size and the distribution of the precipitated phases. After solution treatment( 418 ℃ and 20 h) and high strain-rate rolling( heating at420 ℃ for 10 min firstly and then rolling from 10 mm to 2 mm in thickness via a single pass),the tensile strength of the AZ91 D-0. 2%Ca alloy was 1. 3% higher than that of the AZ91 D-0. 4 D%Y alloy,and the tensile strength of the AZ91 D-0. 2%Ca-0. 4%Y alloy was about 8. 3% and 6. 9% higher than those of the AZ91 D-0. 4%Y and the AZ91 D-0. 2%Ca alloys respectively. 展开更多
关键词 high strain-rate rolling magnesium alloy microstructure mechanical properties TENSILE strength GRAIN size
下载PDF
Dynamic recrystallization,texture and mechanical properties of high Mg content Al−Mg alloy deformed by high strain rate rolling 被引量:6
3
作者 Xin-yu LI Wei-jun XIA +4 位作者 Ji-hua CHEN Hong-ge YAN Zhen-zhen LI Bin SU Min SONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期2885-2898,共14页
The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature... The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature of 400℃and strain rate of 8.6 s^(−1).The microstructure evolution was studied by optical microscope(OM),scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscope(TEM).The alloy that undergoes 2 passes of HSRR exhibits an obvious bimodal grain structure,in which the average grain sizes of the fine dynamic recrystallization(DRX)grains and the coarse non-DRX regions are 6.4 and 47.7mm,respectively.The high strength((507±9)MPa)and the large ductility((24.9±1.3)%)are obtained in the alloy containing the bimodal grain distribution.The discontinuous dynamic recrystallization(DDRX)mechanism is the prominent grain refinement mechanism in the alloy subjected to 2 passes of HSRR. 展开更多
关键词 Al−Mg alloy high strain rate rolling bimodal grain structure dynamic recrystallization
下载PDF
Influence of Low Speed Rolling Movement on High Electrical Breakdown for Water Dielectric with Microsecond Charging 被引量:1
4
作者 张自成 张建德 杨建华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期195-197,共3页
By means of a coaxial apparatus, high electrical breakdown experiments are carried out in the rest state and the low speed rolling state with microsecond charging and the experimental results are analyzed. The conclus... By means of a coaxial apparatus, high electrical breakdown experiments are carried out in the rest state and the low speed rolling state with microsecond charging and the experimental results are analyzed. The conclusions are: (1) the breakdown stress of water dielectric in the rolling state is in good agreement with that in Martin formula, and so is that in the rest state; (2) the breakdown stress of water dielectric in the rolling state is about 5% higher than that in the rest state; (3) the results simulated with ANSYS demonstrate that the breakdown stress of water dielectric decreases when the bubbles appear near the surface of electrodes; (4) the primary mechanism to increase the breakdown stress of water dielectric in the rolling state is that the bubbles are driven away and the number of bubbles near the surface of electrodes is decreased by rolling movement. 展开更多
关键词 low-speed rolling high electrical breakdown microsecond charging
下载PDF
Strain rate and cold rolling dependence of tensile strength and ductility in high nitrogen nickel-free austenitic stainless steel 被引量:1
5
作者 孙贵训 江月 +4 位作者 张晓茹 孙世成 江忠浩 王文权 连建设 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期341-349,共9页
The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room... The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling. 展开更多
关键词 high nitrogen nickel-free austenitic stainless steel cold rolling Ludwigson equation tensile strength and ductility
下载PDF
High density dislocations enhance creep ageing response and mechanical properties in 2195 alloy sheet
6
作者 WEI Shuo MA Pei-pei +3 位作者 CHEN Long-hui YANG Jian-shi ZHAN Li-hua LIU Chun-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2194-2209,共16页
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit... The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion. 展开更多
关键词 creep ageing Al-Cu-Li alloy high dislocation density cryogenic rolling dislocation strengthening
下载PDF
Ultrahigh strength and improved electrical conductivity in an aging strengthened copper alloy processed by combination of equal channel angular pressing and thermomechanical treatment
7
作者 WANG Xu LI Zhou +1 位作者 MENG Xiang-peng XIAO Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1823-1837,共15页
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper... In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample. 展开更多
关键词 Cu-Ti alloy equal channel angular pressing rolling aging treatment high strength
下载PDF
Effect of Rolling Process on Microstructure and Wear Properties of High Carbon Equivalent Gray Cast Iron
8
作者 ZHAO Yihong CHEN Qianyu +4 位作者 ZHENG Zhiwei CAO Pei GONG Ziyu GENG Haoran CHEN Rongfa 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第6期903-910,共8页
Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(... Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(HCEGCI).The microstructures and tribological performance of the untreated and rolled samples were characterized.In addition,the wear mechanism of HCEGCI samples was also studied via pin-on-disc tests.The experimental results show that the as-rolled samples possess the structure-refined layer of 15μm and work-hardened layer of 0.13 mm.In comparison with the surface hardness of untreated samples,the surface hardness of as-rolled samples increases by 84.6%(from 240HV0.1 to 443HV0.1)and the residual compressive stresses existed within the range of 0.2 mm.The wear rates of as-rolled samples were decreased by 38.4%,37.5%,and 44.4%under different loads of 5 N,10 N,and 15 N,respectively.The wear characteristics of the untreated samples mainly exhibit the peeling wear coupled with partial adhesive and abrasive wear.However,as for the as-rolled samples,the adhesive wear was limited by the structure-refined layer and the micro-crack propagation was controlled by the work-hardened layer.Therefore,the wear resistance of as-rolled samples can be improved significantly due to the low wearing degree of the friction contact zone. 展开更多
关键词 high carbon equivalent alloy gray cast iron rolling process MICROSTRUCTURE wear resistance
下载PDF
Microstructural morphology of the semi-solid high carbon steel T12 before and after rheo-rolling 被引量:1
9
作者 JiguangLi YonglinKang AiminZhao YiSun ManCheng 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期139-142,共4页
The semi-solid high carbon steel T12 was rolled in a closed box groove under a certain condition by the rheo-rolling equipment, and the microstructural morphology of the semi-solid T12 before and after deformation wa... The semi-solid high carbon steel T12 was rolled in a closed box groove under a certain condition by the rheo-rolling equipment, and the microstructural morphology of the semi-solid T12 before and after deformation was investigated by optical mi- croscope to analyze and summarize the microstructure evolution law of T12 deformed in semi-solid state. The experiment results show that the grain shape before deformation of the semi-solid T12 steel displays globule or ellipse by the electromagnetic stirring, the distribution of solid and liquid phases is homogeneous. But the microstructure of semi-solid product after rheo-rolling exhibits macrosegregation that the distribution of liquid and solid phases changes, the liquid phases divorce from the solid phases. In the transverse section, most of the solid phases get together in the center of the specimen, the liquid phases flow to the surface or the edge of the specimen, and the grains occur plastic deformation while reduction increased. In longitudinal section, the middle micro- structure of the specimen is more homogeneous than that at the head or tail, the head microstructure is similar to the tail and the size of the grains is not homogeneous. 展开更多
关键词 SEMI-SOLID high carbon steel T12 rheo-rolling microstructural morphology
下载PDF
Advanced test methods of material property characterization:high strain-rate testing and experimental simulation of multiaxial stress states
10
作者 Reinhard BARDENHEIER 《Baosteel Technical Research》 CAS 2010年第S1期122-,共1页
Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u... Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions. 展开更多
关键词 economic design numeric modelling simulation high strain-rate testing strain- rate sensitivity CRASHWORTHINESS multiaxial stress state material constraint equivalent stress state
下载PDF
Dynamic Response of Pultruded Glass-Graphite/Epoxy Hybrid Composites Subjected to Transverse High Strain-Rate Compression Loading
11
作者 Mohammad Afrough Tejas S. Pandya +1 位作者 Seyed Soheil Daryadel Prabhakar Raju Mantena 《Materials Sciences and Applications》 2015年第11期953-962,共10页
In a previous study, the energy absorption and dynamic response of different combinations of cylindrical fiber-reinforced pultruded hybrid composite samples made of unidirectional glass and graphite fiber/epoxy, were ... In a previous study, the energy absorption and dynamic response of different combinations of cylindrical fiber-reinforced pultruded hybrid composite samples made of unidirectional glass and graphite fiber/epoxy, were investigated under longitudinal compression loading. It was found that placing glass fibers in the inner core of composites resulted in a higher ultimate compressive strength and specific energy absorption. In this study, the dynamic responses of pultruded glass-graphite/epoxy hybrid specimens with rectangular cross-section subjected to transverse compression loading are reported. Crack initiation and propagation was monitored using a high-speed video camera, and the effects of hybridization were analyzed. It was found that the location of glass or graphite fibers inside the pultruded composites has no significant effect on the ultimate compressive strength under such transverse compression loading. The energy absorption in all the hybrid specimens was almost identical. Graphite/epoxy composite showed higher specific energy absorption due to its lower density, and glass/epoxy composite had the lowest specific energy absorption. 展开更多
关键词 Pultruded Composites high strain-rate Compression Loading SHPB Energy Absorption TRANSVERSE Loadings
下载PDF
Energy Absorption of Pultruded Glass-Graphite/Epoxy Hybrid Composites under High Strain-Rate Induced Transverse Tension
12
作者 Damian Stoddard Suman Babu Ukyam +1 位作者 R. Mantena Prabhakar Arunachalam Rajendran 《Open Journal of Composite Materials》 2018年第2期43-53,共11页
This paper focuses on the dynamic tensile response of glass-graphite/epoxy composites illustrating improvement in energy absorption through hybridization. The dynamic response and energy absorption characteristics of ... This paper focuses on the dynamic tensile response of glass-graphite/epoxy composites illustrating improvement in energy absorption through hybridization. The dynamic response and energy absorption characteristics of pultruded hybrid combinations of glass and graphite fibers in an epoxy matrix subjected to induced transverse tension at high strain-rate in a modified Split Hopkinson Pressure Bar (SHPB) apparatus, are presented. Transverse tensile strength was determined by diametral compression of disc samples (Brazilian indirect tensile test method). Diametral crack initiation and strain to failure were monitored with a Shimadzu HPV-2 high-speed video camera at a recording speed of 500,000 fps and Digital Image Correlation (DIC). Adequate measures were taken to ensure that initiation of specimen failure occurred at the exact center of the disc specimen, and propagated through the diameter along the compressive loading axis, for the induced transverse tension tests to be valid. A study of the strength and specific energy absorption demonstrates the benefits of hybridization. Under induced transverse tensile loading condition, the pure glass/epoxy (GL60) exhibited higher strength than pure graphite/epoxy (GR60). Pure graphite/epoxy (GR60) has higher specific energy absorption capacity than pure glass/epoxy (GL60) in transverse tension. Among all hybrids, GR30 has the highest specific energy absorption under transverse tension. Overall, hybrid GL48, with 48% low-cost glass fibers in the inner core and 12% high-cost graphite fibers in outer shell, was found to exhibit better performance under induced transverse tension at high strain-rates, showing the benefits of hybridization. 展开更多
关键词 Pultruded Composites HYBRIDS high strain-rate SHPB Dynamic Energy Absorption BRAZILIAN Disc Indirect Tensile Test
下载PDF
Wear Mechanisms of High Chromium Iron Roll under Hot Rolling Conditions
13
作者 Cui Peiyong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1997年第1期46-51,共5页
By using a reformed laboratory rolling mill,hot wear test under near service conditions has been carried out to examine the wear mechanisms of high chromium iron roll.Each time after being rolled up to a given cycle,t... By using a reformed laboratory rolling mill,hot wear test under near service conditions has been carried out to examine the wear mechanisms of high chromium iron roll.Each time after being rolled up to a given cycle,the worn morphology of roll surface was examined under SEM and occasionally by AES.Based on rolling conditions and lasting of in-service time,various wear characteristics have been identified distinctly.It involves abrasive wear and oxidation wear for matrix phase,fatigue wear,polishing wear and grain pull-out wear for carbides,smear adhesive wear,chemical wear,and in extreme case,plasticity-dominated wear.At the same time,wear type is also discussed compatibly in terms of abrasive wear,fatigue wear,as well as chemical wear according to conventional classification.And only in an extreme situation,i.e.rolling without cooling water,adhesive wear may partially be involved.At anytime under specified conditions,there are always several wear mechanisms occurring simultaneously,but usually only one of them can be identified as the dominant mode.And finally a wear mechanism figure can be depicted to qualitatively describe the relationship among them. 展开更多
关键词 mill roll high-chromium iron WEAR wear mode
下载PDF
Adaptive Modification of the Rolling Force Prediction 被引量:7
14
作者 姚小兰 张迪生 +1 位作者 梁启宏 胡浩平 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期33-36,共4页
In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the... In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the measured and predicted data, the precision of the predicted rolling force is gradually improved. This system has been used in plant for more than one year, and the result of the application shows that the system has steady and reliable performance, and high precision. 展开更多
关键词 hot rolling four high mill automatic gauge control bender roller
下载PDF
High strain rate superplasticity of rolled AZ91 magnesium alloy 被引量:6
15
作者 WANG Qudong WEI Yinhong +1 位作者 Y. Chino M. Mabuchi 《Rare Metals》 SCIE EI CAS CSCD 2008年第1期46-49,共4页
The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^... The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism. 展开更多
关键词 AZ91 magnesium alloy high strain rate superplasticity rolling grain boundary sliding
下载PDF
A study on centrifugal casting of high speed steel roll 被引量:6
16
作者 H.G.Fu X.H.Zhang 《China Foundry》 SCIE CAS 2004年第S1期49-53,共5页
High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost ... High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost alloyed cast iron rolls is poor and the cost of high-quality PM hard alloy rolls is very high. By means of centrifugal casting, HSS rolls having excellent wear resistance have been manufactured. The hardness of the HSS roll is 6.5~67 HRC, the range of variation is smaller than 2 HRC and its impact toughness is 15 J/cm^2. The wear rate of HSS rolls used in the pre-finishing stands of high-speed hot wire-rod rolling mill reaches 2.5×10^(-4)mm per ton steel. Furthermore, the manufacturing cost of HSS rolls is significantly lower than that of PM hard alloy rolls; it is only 30 percent of that of PM hard alloy rolls. 展开更多
关键词 high speed steel centrifugal casting roll SEGREGATION crackle
下载PDF
Mechanism of high pressure roll grinding on compression strength of oxidized hematite pellets 被引量:15
17
作者 范建军 邱冠周 +3 位作者 姜涛 郭宇峰 郝海正 杨永斌 《Journal of Central South University》 SCIE EI CAS 2012年第9期2611-2619,共9页
The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pel... The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process. 展开更多
关键词 hematite concentrate PELLET high pressure roll grinding (HPRG) specific surface area lattice defect dispersion degree micro-sized particle
下载PDF
Strengthening pelletization of manganese ore fines containing high combined water by high pressure roll grinding and optimized temperature elevation system 被引量:5
18
作者 朱德庆 余为 +1 位作者 周仙霖 潘建 《Journal of Central South University》 SCIE EI CAS 2014年第9期3485-3491,共7页
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ... Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese. 展开更多
关键词 manganese ore fines containing high combined water PELLETIZATION high pressure roll grinding optimized temperatureelevation system consolidation mechanism
下载PDF
Microstructural evolution and enhanced mechanical properties of Mg?Gd?Y?Zn?Zr alloy via centrifugal casting, ring-rolling and aging 被引量:5
19
作者 Zhenduo Ma Guo Li +6 位作者 Qiang Peng Xiaodong Peng Daolun Chen HanzhuZhang Yan Yang Guobing Wei Weidong Xie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期131-141,共11页
A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensi... A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensile properties of the alloy were investigated. The results indicate that the microstructure of centrifugal cast alloy consists of equiaxed grains and network-like eutectic structure present at grain boundaries. The ring-rolled alloy exhibits a characteristic bimodal microstructure composed of fine dynamic recrystallized(DRXed) grains with weak basal texture and coarse un-DRXed grains with strong basal texture, along with the presence of LPSO phase. With increasing amount of accumulative ring-rolling reduction, the coarse un-DRXed grains are refined via the formation of increasing amount of fine DRXed grains. Meanwhile, the dynamic precipitation of Mg5 RE phase occurs, generating a dispersion strengthening effect. A superior combination of strength and ductility is achieved in the ring-rolled alloy after an accumulative rolling reduction of 80%. The tensile strength of this ring-rolled alloy after peak aging is further enhanced, reaching 511 MPa, while keeping a reasonable ductility. The salient strengthening mechanisms identified include the grain boundary strengthening of fine DRXed grains, dispersion strengthening of dynamic precipitated Mg;RE phase, short fiber strengthening of LPSO lamellae/rods, and precipitation strengthening of nano-sized prismatic β precipitates and basal γ precipitates. 展开更多
关键词 high strength magnesium alloy Centrifugal casting Ring rolling AGING Mechanical property
下载PDF
Computer simulation of core filling process of cast high speed steel roll 被引量:4
20
作者 Song Nannan Luan Yikun +3 位作者 Bai Yunlong Kang Xiuhong Xia Lijun Li Dianzhong 《China Foundry》 SCIE CAS 2009年第4期314-318,共5页
Core filling process of cast high speed steel roll was simulated.Ductile iron was used as core material.The influences of filling parameters,such as core filling time and core filling temperature,on the filling proces... Core filling process of cast high speed steel roll was simulated.Ductile iron was used as core material.The influences of filling parameters,such as core filling time and core filling temperature,on the filling process were investigated.Based on the simulated results,optimal core filling parameters were determined.The predicted temperature fields show that the temperature at the roll shoulder is the lowest during the core filling process and usually causes binding defects there.Method for solving this problem was presented. 展开更多
关键词 computer simulation high speed steel roll core filling binding layer
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部