In the current study,high strain-rate rolling(≥10 s-1) has been successfully employed to produce Mg-3 A1-1 Zn alloy sheets to a high reduction of 82% with a fine grain structure in a single pass.The underlying mechan...In the current study,high strain-rate rolling(≥10 s-1) has been successfully employed to produce Mg-3 A1-1 Zn alloy sheets to a high reduction of 82% with a fine grain structure in a single pass.The underlying mechanism of forming primary and secondary edge cracks has been investigated.It is found that dynamic recrystallization(DRX) induced by subgrains tends to blunt cracks,while twinning-induced D RX is mainly observed around sharp crack tips.The motion of emitted dislocations from blunted cracks is inhibited by the DRX grain boundaries.This,on one hand,increases local work hardening,and on the other hand,causes stress concentration alo ng grain boundaries especially in the triple junctions leading to the formation of secondary cracks.展开更多
Effects of calcium( Ca) and yttrium( Y) on microstructure and mechanical properties of high strain-rate rolled AZ91 D magnesium alloy were studied. High strain-rate rolling can improve the strength and plasticity of m...Effects of calcium( Ca) and yttrium( Y) on microstructure and mechanical properties of high strain-rate rolled AZ91 D magnesium alloy were studied. High strain-rate rolling can improve the strength and plasticity of magnesium alloy sheets.Additions of Ca and Y into AZ91 D can refine grains and modify the size and the distribution of the precipitated phases. After solution treatment( 418 ℃ and 20 h) and high strain-rate rolling( heating at420 ℃ for 10 min firstly and then rolling from 10 mm to 2 mm in thickness via a single pass),the tensile strength of the AZ91 D-0. 2%Ca alloy was 1. 3% higher than that of the AZ91 D-0. 4 D%Y alloy,and the tensile strength of the AZ91 D-0. 2%Ca-0. 4%Y alloy was about 8. 3% and 6. 9% higher than those of the AZ91 D-0. 4%Y and the AZ91 D-0. 2%Ca alloys respectively.展开更多
The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature...The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature of 400℃and strain rate of 8.6 s^(−1).The microstructure evolution was studied by optical microscope(OM),scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscope(TEM).The alloy that undergoes 2 passes of HSRR exhibits an obvious bimodal grain structure,in which the average grain sizes of the fine dynamic recrystallization(DRX)grains and the coarse non-DRX regions are 6.4 and 47.7mm,respectively.The high strength((507±9)MPa)and the large ductility((24.9±1.3)%)are obtained in the alloy containing the bimodal grain distribution.The discontinuous dynamic recrystallization(DDRX)mechanism is the prominent grain refinement mechanism in the alloy subjected to 2 passes of HSRR.展开更多
By means of a coaxial apparatus, high electrical breakdown experiments are carried out in the rest state and the low speed rolling state with microsecond charging and the experimental results are analyzed. The conclus...By means of a coaxial apparatus, high electrical breakdown experiments are carried out in the rest state and the low speed rolling state with microsecond charging and the experimental results are analyzed. The conclusions are: (1) the breakdown stress of water dielectric in the rolling state is in good agreement with that in Martin formula, and so is that in the rest state; (2) the breakdown stress of water dielectric in the rolling state is about 5% higher than that in the rest state; (3) the results simulated with ANSYS demonstrate that the breakdown stress of water dielectric decreases when the bubbles appear near the surface of electrodes; (4) the primary mechanism to increase the breakdown stress of water dielectric in the rolling state is that the bubbles are driven away and the number of bubbles near the surface of electrodes is decreased by rolling movement.展开更多
The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room...The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.展开更多
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit...The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(...Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(HCEGCI).The microstructures and tribological performance of the untreated and rolled samples were characterized.In addition,the wear mechanism of HCEGCI samples was also studied via pin-on-disc tests.The experimental results show that the as-rolled samples possess the structure-refined layer of 15μm and work-hardened layer of 0.13 mm.In comparison with the surface hardness of untreated samples,the surface hardness of as-rolled samples increases by 84.6%(from 240HV0.1 to 443HV0.1)and the residual compressive stresses existed within the range of 0.2 mm.The wear rates of as-rolled samples were decreased by 38.4%,37.5%,and 44.4%under different loads of 5 N,10 N,and 15 N,respectively.The wear characteristics of the untreated samples mainly exhibit the peeling wear coupled with partial adhesive and abrasive wear.However,as for the as-rolled samples,the adhesive wear was limited by the structure-refined layer and the micro-crack propagation was controlled by the work-hardened layer.Therefore,the wear resistance of as-rolled samples can be improved significantly due to the low wearing degree of the friction contact zone.展开更多
The semi-solid high carbon steel T12 was rolled in a closed box groove under a certain condition by the rheo-rolling equipment, and the microstructural morphology of the semi-solid T12 before and after deformation wa...The semi-solid high carbon steel T12 was rolled in a closed box groove under a certain condition by the rheo-rolling equipment, and the microstructural morphology of the semi-solid T12 before and after deformation was investigated by optical mi- croscope to analyze and summarize the microstructure evolution law of T12 deformed in semi-solid state. The experiment results show that the grain shape before deformation of the semi-solid T12 steel displays globule or ellipse by the electromagnetic stirring, the distribution of solid and liquid phases is homogeneous. But the microstructure of semi-solid product after rheo-rolling exhibits macrosegregation that the distribution of liquid and solid phases changes, the liquid phases divorce from the solid phases. In the transverse section, most of the solid phases get together in the center of the specimen, the liquid phases flow to the surface or the edge of the specimen, and the grains occur plastic deformation while reduction increased. In longitudinal section, the middle micro- structure of the specimen is more homogeneous than that at the head or tail, the head microstructure is similar to the tail and the size of the grains is not homogeneous.展开更多
Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u...Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.展开更多
In a previous study, the energy absorption and dynamic response of different combinations of cylindrical fiber-reinforced pultruded hybrid composite samples made of unidirectional glass and graphite fiber/epoxy, were ...In a previous study, the energy absorption and dynamic response of different combinations of cylindrical fiber-reinforced pultruded hybrid composite samples made of unidirectional glass and graphite fiber/epoxy, were investigated under longitudinal compression loading. It was found that placing glass fibers in the inner core of composites resulted in a higher ultimate compressive strength and specific energy absorption. In this study, the dynamic responses of pultruded glass-graphite/epoxy hybrid specimens with rectangular cross-section subjected to transverse compression loading are reported. Crack initiation and propagation was monitored using a high-speed video camera, and the effects of hybridization were analyzed. It was found that the location of glass or graphite fibers inside the pultruded composites has no significant effect on the ultimate compressive strength under such transverse compression loading. The energy absorption in all the hybrid specimens was almost identical. Graphite/epoxy composite showed higher specific energy absorption due to its lower density, and glass/epoxy composite had the lowest specific energy absorption.展开更多
This paper focuses on the dynamic tensile response of glass-graphite/epoxy composites illustrating improvement in energy absorption through hybridization. The dynamic response and energy absorption characteristics of ...This paper focuses on the dynamic tensile response of glass-graphite/epoxy composites illustrating improvement in energy absorption through hybridization. The dynamic response and energy absorption characteristics of pultruded hybrid combinations of glass and graphite fibers in an epoxy matrix subjected to induced transverse tension at high strain-rate in a modified Split Hopkinson Pressure Bar (SHPB) apparatus, are presented. Transverse tensile strength was determined by diametral compression of disc samples (Brazilian indirect tensile test method). Diametral crack initiation and strain to failure were monitored with a Shimadzu HPV-2 high-speed video camera at a recording speed of 500,000 fps and Digital Image Correlation (DIC). Adequate measures were taken to ensure that initiation of specimen failure occurred at the exact center of the disc specimen, and propagated through the diameter along the compressive loading axis, for the induced transverse tension tests to be valid. A study of the strength and specific energy absorption demonstrates the benefits of hybridization. Under induced transverse tensile loading condition, the pure glass/epoxy (GL60) exhibited higher strength than pure graphite/epoxy (GR60). Pure graphite/epoxy (GR60) has higher specific energy absorption capacity than pure glass/epoxy (GL60) in transverse tension. Among all hybrids, GR30 has the highest specific energy absorption under transverse tension. Overall, hybrid GL48, with 48% low-cost glass fibers in the inner core and 12% high-cost graphite fibers in outer shell, was found to exhibit better performance under induced transverse tension at high strain-rates, showing the benefits of hybridization.展开更多
By using a reformed laboratory rolling mill,hot wear test under near service conditions has been carried out to examine the wear mechanisms of high chromium iron roll.Each time after being rolled up to a given cycle,t...By using a reformed laboratory rolling mill,hot wear test under near service conditions has been carried out to examine the wear mechanisms of high chromium iron roll.Each time after being rolled up to a given cycle,the worn morphology of roll surface was examined under SEM and occasionally by AES.Based on rolling conditions and lasting of in-service time,various wear characteristics have been identified distinctly.It involves abrasive wear and oxidation wear for matrix phase,fatigue wear,polishing wear and grain pull-out wear for carbides,smear adhesive wear,chemical wear,and in extreme case,plasticity-dominated wear.At the same time,wear type is also discussed compatibly in terms of abrasive wear,fatigue wear,as well as chemical wear according to conventional classification.And only in an extreme situation,i.e.rolling without cooling water,adhesive wear may partially be involved.At anytime under specified conditions,there are always several wear mechanisms occurring simultaneously,but usually only one of them can be identified as the dominant mode.And finally a wear mechanism figure can be depicted to qualitatively describe the relationship among them.展开更多
In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the...In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the measured and predicted data, the precision of the predicted rolling force is gradually improved. This system has been used in plant for more than one year, and the result of the application shows that the system has steady and reliable performance, and high precision.展开更多
The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^...The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism.展开更多
High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost ...High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost alloyed cast iron rolls is poor and the cost of high-quality PM hard alloy rolls is very high. By means of centrifugal casting, HSS rolls having excellent wear resistance have been manufactured. The hardness of the HSS roll is 6.5~67 HRC, the range of variation is smaller than 2 HRC and its impact toughness is 15 J/cm^2. The wear rate of HSS rolls used in the pre-finishing stands of high-speed hot wire-rod rolling mill reaches 2.5×10^(-4)mm per ton steel. Furthermore, the manufacturing cost of HSS rolls is significantly lower than that of PM hard alloy rolls; it is only 30 percent of that of PM hard alloy rolls.展开更多
The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pel...The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensi...A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensile properties of the alloy were investigated. The results indicate that the microstructure of centrifugal cast alloy consists of equiaxed grains and network-like eutectic structure present at grain boundaries. The ring-rolled alloy exhibits a characteristic bimodal microstructure composed of fine dynamic recrystallized(DRXed) grains with weak basal texture and coarse un-DRXed grains with strong basal texture, along with the presence of LPSO phase. With increasing amount of accumulative ring-rolling reduction, the coarse un-DRXed grains are refined via the formation of increasing amount of fine DRXed grains. Meanwhile, the dynamic precipitation of Mg5 RE phase occurs, generating a dispersion strengthening effect. A superior combination of strength and ductility is achieved in the ring-rolled alloy after an accumulative rolling reduction of 80%. The tensile strength of this ring-rolled alloy after peak aging is further enhanced, reaching 511 MPa, while keeping a reasonable ductility. The salient strengthening mechanisms identified include the grain boundary strengthening of fine DRXed grains, dispersion strengthening of dynamic precipitated Mg;RE phase, short fiber strengthening of LPSO lamellae/rods, and precipitation strengthening of nano-sized prismatic β precipitates and basal γ precipitates.展开更多
Core filling process of cast high speed steel roll was simulated.Ductile iron was used as core material.The influences of filling parameters,such as core filling time and core filling temperature,on the filling proces...Core filling process of cast high speed steel roll was simulated.Ductile iron was used as core material.The influences of filling parameters,such as core filling time and core filling temperature,on the filling process were investigated.Based on the simulated results,optimal core filling parameters were determined.The predicted temperature fields show that the temperature at the roll shoulder is the lowest during the core filling process and usually causes binding defects there.Method for solving this problem was presented.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51601062, 51905166, 11872216 and 51605159)。
文摘In the current study,high strain-rate rolling(≥10 s-1) has been successfully employed to produce Mg-3 A1-1 Zn alloy sheets to a high reduction of 82% with a fine grain structure in a single pass.The underlying mechanism of forming primary and secondary edge cracks has been investigated.It is found that dynamic recrystallization(DRX) induced by subgrains tends to blunt cracks,while twinning-induced D RX is mainly observed around sharp crack tips.The motion of emitted dislocations from blunted cracks is inhibited by the DRX grain boundaries.This,on one hand,increases local work hardening,and on the other hand,causes stress concentration alo ng grain boundaries especially in the triple junctions leading to the formation of secondary cracks.
基金Natural Science Foundation of Hunan Province,China(No.2017JJ5032)
文摘Effects of calcium( Ca) and yttrium( Y) on microstructure and mechanical properties of high strain-rate rolled AZ91 D magnesium alloy were studied. High strain-rate rolling can improve the strength and plasticity of magnesium alloy sheets.Additions of Ca and Y into AZ91 D can refine grains and modify the size and the distribution of the precipitated phases. After solution treatment( 418 ℃ and 20 h) and high strain-rate rolling( heating at420 ℃ for 10 min firstly and then rolling from 10 mm to 2 mm in thickness via a single pass),the tensile strength of the AZ91 D-0. 2%Ca alloy was 1. 3% higher than that of the AZ91 D-0. 4 D%Y alloy,and the tensile strength of the AZ91 D-0. 2%Ca-0. 4%Y alloy was about 8. 3% and 6. 9% higher than those of the AZ91 D-0. 4%Y and the AZ91 D-0. 2%Ca alloys respectively.
文摘The Al−Mg alloy with high Mg addition(Al−9.2Mg−0.8Mn−0.2Zr-0.15Ti,in wt.%)was subjected to different passes(1,2 and 4)of high strain rate rolling(HSRR),with the total thickness reduction of 72%,the rolling temperature of 400℃and strain rate of 8.6 s^(−1).The microstructure evolution was studied by optical microscope(OM),scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscope(TEM).The alloy that undergoes 2 passes of HSRR exhibits an obvious bimodal grain structure,in which the average grain sizes of the fine dynamic recrystallization(DRX)grains and the coarse non-DRX regions are 6.4 and 47.7mm,respectively.The high strength((507±9)MPa)and the large ductility((24.9±1.3)%)are obtained in the alloy containing the bimodal grain distribution.The discontinuous dynamic recrystallization(DDRX)mechanism is the prominent grain refinement mechanism in the alloy subjected to 2 passes of HSRR.
基金supported by the National 863 Project of China(No. 807-2020, 803-5051)
文摘By means of a coaxial apparatus, high electrical breakdown experiments are carried out in the rest state and the low speed rolling state with microsecond charging and the experimental results are analyzed. The conclusions are: (1) the breakdown stress of water dielectric in the rolling state is in good agreement with that in Martin formula, and so is that in the rest state; (2) the breakdown stress of water dielectric in the rolling state is about 5% higher than that in the rest state; (3) the results simulated with ANSYS demonstrate that the breakdown stress of water dielectric decreases when the bubbles appear near the surface of electrodes; (4) the primary mechanism to increase the breakdown stress of water dielectric in the rolling state is that the bubbles are driven away and the number of bubbles near the surface of electrodes is decreased by rolling movement.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.51371089 and 51401083)
文摘The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.
基金Projects(52274404,52305441,U22A20190)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20065,2023JJ40739)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2022RC1001)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023ZZTS0972)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021YFB3400903)supported by the National Key R&D Program of China。
文摘The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
基金Funded by the National Natural Science Foundation of China(No.51872254)the Yangzhou Hanjiang District Science and Technology Plan Project of China(No.HJM2019006)。
文摘Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(HCEGCI).The microstructures and tribological performance of the untreated and rolled samples were characterized.In addition,the wear mechanism of HCEGCI samples was also studied via pin-on-disc tests.The experimental results show that the as-rolled samples possess the structure-refined layer of 15μm and work-hardened layer of 0.13 mm.In comparison with the surface hardness of untreated samples,the surface hardness of as-rolled samples increases by 84.6%(from 240HV0.1 to 443HV0.1)and the residual compressive stresses existed within the range of 0.2 mm.The wear rates of as-rolled samples were decreased by 38.4%,37.5%,and 44.4%under different loads of 5 N,10 N,and 15 N,respectively.The wear characteristics of the untreated samples mainly exhibit the peeling wear coupled with partial adhesive and abrasive wear.However,as for the as-rolled samples,the adhesive wear was limited by the structure-refined layer and the micro-crack propagation was controlled by the work-hardened layer.Therefore,the wear resistance of as-rolled samples can be improved significantly due to the low wearing degree of the friction contact zone.
基金This work was financially supported by the National Natural Science Foundation of China and Baosteel (No.50174003).
文摘The semi-solid high carbon steel T12 was rolled in a closed box groove under a certain condition by the rheo-rolling equipment, and the microstructural morphology of the semi-solid T12 before and after deformation was investigated by optical mi- croscope to analyze and summarize the microstructure evolution law of T12 deformed in semi-solid state. The experiment results show that the grain shape before deformation of the semi-solid T12 steel displays globule or ellipse by the electromagnetic stirring, the distribution of solid and liquid phases is homogeneous. But the microstructure of semi-solid product after rheo-rolling exhibits macrosegregation that the distribution of liquid and solid phases changes, the liquid phases divorce from the solid phases. In the transverse section, most of the solid phases get together in the center of the specimen, the liquid phases flow to the surface or the edge of the specimen, and the grains occur plastic deformation while reduction increased. In longitudinal section, the middle micro- structure of the specimen is more homogeneous than that at the head or tail, the head microstructure is similar to the tail and the size of the grains is not homogeneous.
文摘Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.
文摘In a previous study, the energy absorption and dynamic response of different combinations of cylindrical fiber-reinforced pultruded hybrid composite samples made of unidirectional glass and graphite fiber/epoxy, were investigated under longitudinal compression loading. It was found that placing glass fibers in the inner core of composites resulted in a higher ultimate compressive strength and specific energy absorption. In this study, the dynamic responses of pultruded glass-graphite/epoxy hybrid specimens with rectangular cross-section subjected to transverse compression loading are reported. Crack initiation and propagation was monitored using a high-speed video camera, and the effects of hybridization were analyzed. It was found that the location of glass or graphite fibers inside the pultruded composites has no significant effect on the ultimate compressive strength under such transverse compression loading. The energy absorption in all the hybrid specimens was almost identical. Graphite/epoxy composite showed higher specific energy absorption due to its lower density, and glass/epoxy composite had the lowest specific energy absorption.
文摘This paper focuses on the dynamic tensile response of glass-graphite/epoxy composites illustrating improvement in energy absorption through hybridization. The dynamic response and energy absorption characteristics of pultruded hybrid combinations of glass and graphite fibers in an epoxy matrix subjected to induced transverse tension at high strain-rate in a modified Split Hopkinson Pressure Bar (SHPB) apparatus, are presented. Transverse tensile strength was determined by diametral compression of disc samples (Brazilian indirect tensile test method). Diametral crack initiation and strain to failure were monitored with a Shimadzu HPV-2 high-speed video camera at a recording speed of 500,000 fps and Digital Image Correlation (DIC). Adequate measures were taken to ensure that initiation of specimen failure occurred at the exact center of the disc specimen, and propagated through the diameter along the compressive loading axis, for the induced transverse tension tests to be valid. A study of the strength and specific energy absorption demonstrates the benefits of hybridization. Under induced transverse tensile loading condition, the pure glass/epoxy (GL60) exhibited higher strength than pure graphite/epoxy (GR60). Pure graphite/epoxy (GR60) has higher specific energy absorption capacity than pure glass/epoxy (GL60) in transverse tension. Among all hybrids, GR30 has the highest specific energy absorption under transverse tension. Overall, hybrid GL48, with 48% low-cost glass fibers in the inner core and 12% high-cost graphite fibers in outer shell, was found to exhibit better performance under induced transverse tension at high strain-rates, showing the benefits of hybridization.
文摘By using a reformed laboratory rolling mill,hot wear test under near service conditions has been carried out to examine the wear mechanisms of high chromium iron roll.Each time after being rolled up to a given cycle,the worn morphology of roll surface was examined under SEM and occasionally by AES.Based on rolling conditions and lasting of in-service time,various wear characteristics have been identified distinctly.It involves abrasive wear and oxidation wear for matrix phase,fatigue wear,polishing wear and grain pull-out wear for carbides,smear adhesive wear,chemical wear,and in extreme case,plasticity-dominated wear.At the same time,wear type is also discussed compatibly in terms of abrasive wear,fatigue wear,as well as chemical wear according to conventional classification.And only in an extreme situation,i.e.rolling without cooling water,adhesive wear may partially be involved.At anytime under specified conditions,there are always several wear mechanisms occurring simultaneously,but usually only one of them can be identified as the dominant mode.And finally a wear mechanism figure can be depicted to qualitatively describe the relationship among them.
文摘In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the measured and predicted data, the precision of the predicted rolling force is gradually improved. This system has been used in plant for more than one year, and the result of the application shows that the system has steady and reliable performance, and high precision.
基金supported by the National Natural Science Foundation of China(No.50674067).
文摘The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism.
文摘High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost alloyed cast iron rolls is poor and the cost of high-quality PM hard alloy rolls is very high. By means of centrifugal casting, HSS rolls having excellent wear resistance have been manufactured. The hardness of the HSS roll is 6.5~67 HRC, the range of variation is smaller than 2 HRC and its impact toughness is 15 J/cm^2. The wear rate of HSS rolls used in the pre-finishing stands of high-speed hot wire-rod rolling mill reaches 2.5×10^(-4)mm per ton steel. Furthermore, the manufacturing cost of HSS rolls is significantly lower than that of PM hard alloy rolls; it is only 30 percent of that of PM hard alloy rolls.
基金Project(50725416) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
基金financial support by Fundamental Research Funds for the National Key Research and Development Program of China(Project No.2016YFB0700403)the Venture&Innovation Support Program for Chongqing Overseas Returnees(Project No.cx2018057)+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology(Project Nos.cstc2019jcyjmsxm0548 and cstc2019jcyj-msxm X0306)the Fundamental Research Funds for the Central Universities(Project No.2021CDJJMRH-001)。
文摘A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensile properties of the alloy were investigated. The results indicate that the microstructure of centrifugal cast alloy consists of equiaxed grains and network-like eutectic structure present at grain boundaries. The ring-rolled alloy exhibits a characteristic bimodal microstructure composed of fine dynamic recrystallized(DRXed) grains with weak basal texture and coarse un-DRXed grains with strong basal texture, along with the presence of LPSO phase. With increasing amount of accumulative ring-rolling reduction, the coarse un-DRXed grains are refined via the formation of increasing amount of fine DRXed grains. Meanwhile, the dynamic precipitation of Mg5 RE phase occurs, generating a dispersion strengthening effect. A superior combination of strength and ductility is achieved in the ring-rolled alloy after an accumulative rolling reduction of 80%. The tensile strength of this ring-rolled alloy after peak aging is further enhanced, reaching 511 MPa, while keeping a reasonable ductility. The salient strengthening mechanisms identified include the grain boundary strengthening of fine DRXed grains, dispersion strengthening of dynamic precipitated Mg;RE phase, short fiber strengthening of LPSO lamellae/rods, and precipitation strengthening of nano-sized prismatic β precipitates and basal γ precipitates.
文摘Core filling process of cast high speed steel roll was simulated.Ductile iron was used as core material.The influences of filling parameters,such as core filling time and core filling temperature,on the filling process were investigated.Based on the simulated results,optimal core filling parameters were determined.The predicted temperature fields show that the temperature at the roll shoulder is the lowest during the core filling process and usually causes binding defects there.Method for solving this problem was presented.