In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a &...In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a "round-house" type tensile stress-strain curve with low Y/T ratio,highly uniform elongation and high n-value,which means PF + B microstructure has the best deformability(i.e.Ideal stress-strain behavior) among the four microstructures.The steel with acicular ferrite-martensite&austenite(AF + MA) microstructure has a "continuous-yielding" type tensile stress-strain curve,whose deformability is worse than that of PF + B microstructure.Both the steels of polygonal ferrite-acicular ferrite(PF + AF) and polygonal ferrite-pearlite (PF+P) microstructure have "luders elongation" type tensile stress-strain curve with high Y/T ratio,low uniform elongation and low n-value,which means PF + AF and PF + P microstructures have the worst deformability among the four microstructures.展开更多
Over the past twenty years, significant advances have been made in the field of microalloying and associated applications, among which one of the most successful application cases is HTP practice for heavy gauge, high...Over the past twenty years, significant advances have been made in the field of microalloying and associated applications, among which one of the most successful application cases is HTP practice for heavy gauge, high strength pipeline steels. Combined the strengthening effects of TMCP and retardation effects of austenite recrystallization with increasing Nb in austenite region, HTP conception with low carbon and high niobium alloy design has been successfully applied to develop X80 coil with a thickness of 18.4 mm used for China's Second West-East pipeline. During this process, big efforts were made to further develop and enrich the application of microalloying technology, and at the same time the strengthening effects of Nb have been completely unfolded and fully utilized with improved metallurgical quality and quantitative analysis of microstructure. In this paper, the existing status and strengthening effect of Nb during reheating, rolling and cooling have been analyzed and characterized based on mass production samples and laboratory analysis. As confirmed, grain refinement remains the most basic strengthening measure to reduce the microstructure gradient along the thickness, which in turn enlarges the processing window to improve upon low temperature toughness, and finally make it possible to develop heavy gauge, high strength pipeline steels with more challenging fracture toughness requirements. As stated by a good saying that practice makes perfect. Based on application practice and theoretical analysis, HTP has been extended to develop heavy gauge and high strength pipeline steels with increasing requirements, including X80 SSAW pipe with a thickness of 22.0 mm and above, X80 LSAW pipe combining heavy gauge and large diameter, heavy gauge X80 LSAW pipe with low temperature requirements, as well as X90 steels. In this paper, alloy design, production processing, as well as mechanical properties and microstructure used for these products would be illustrated.展开更多
文摘In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a "round-house" type tensile stress-strain curve with low Y/T ratio,highly uniform elongation and high n-value,which means PF + B microstructure has the best deformability(i.e.Ideal stress-strain behavior) among the four microstructures.The steel with acicular ferrite-martensite&austenite(AF + MA) microstructure has a "continuous-yielding" type tensile stress-strain curve,whose deformability is worse than that of PF + B microstructure.Both the steels of polygonal ferrite-acicular ferrite(PF + AF) and polygonal ferrite-pearlite (PF+P) microstructure have "luders elongation" type tensile stress-strain curve with high Y/T ratio,low uniform elongation and low n-value,which means PF + AF and PF + P microstructures have the worst deformability among the four microstructures.
文摘Over the past twenty years, significant advances have been made in the field of microalloying and associated applications, among which one of the most successful application cases is HTP practice for heavy gauge, high strength pipeline steels. Combined the strengthening effects of TMCP and retardation effects of austenite recrystallization with increasing Nb in austenite region, HTP conception with low carbon and high niobium alloy design has been successfully applied to develop X80 coil with a thickness of 18.4 mm used for China's Second West-East pipeline. During this process, big efforts were made to further develop and enrich the application of microalloying technology, and at the same time the strengthening effects of Nb have been completely unfolded and fully utilized with improved metallurgical quality and quantitative analysis of microstructure. In this paper, the existing status and strengthening effect of Nb during reheating, rolling and cooling have been analyzed and characterized based on mass production samples and laboratory analysis. As confirmed, grain refinement remains the most basic strengthening measure to reduce the microstructure gradient along the thickness, which in turn enlarges the processing window to improve upon low temperature toughness, and finally make it possible to develop heavy gauge, high strength pipeline steels with more challenging fracture toughness requirements. As stated by a good saying that practice makes perfect. Based on application practice and theoretical analysis, HTP has been extended to develop heavy gauge and high strength pipeline steels with increasing requirements, including X80 SSAW pipe with a thickness of 22.0 mm and above, X80 LSAW pipe combining heavy gauge and large diameter, heavy gauge X80 LSAW pipe with low temperature requirements, as well as X90 steels. In this paper, alloy design, production processing, as well as mechanical properties and microstructure used for these products would be illustrated.