Here we proposed a novel approach to greatly enhance the electrochemical performance of Li-S batteries by designing a composite electrode material composed of a core-shell structure of S@Pt composite(sulfur content,85...Here we proposed a novel approach to greatly enhance the electrochemical performance of Li-S batteries by designing a composite electrode material composed of a core-shell structure of S@Pt composite(sulfur content,85%)grown on the S surface.The platinum(Pt)nanosheets provide physical barrier and strong chemical binding to anchor LiPSs and improve the electronic conductivity of S.Significantly,by introducing carbon nanofibers(CNFs)as the interlayer,we achieved outstanding Li-S battery with a high initial discharge capacity of 1040 mAh g^(-1)at 1.0C and a reversible capacity of 742 mAh g^(-1)after 350 cycles,demonstrating its excellent long-term cycling stability with a low capacity decay rate of 0.08%per cycle.According to the density functional theory(DFT)calculations,we proposed that the superior performance is attributed to the cooperative effects of the strong interfacial interaction between Pt(111)surface and the S8 molecule,and very low reaction energy of decomposition,−6.4eV.展开更多
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfu...Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm^(-2) and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.展开更多
Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(...Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.展开更多
High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode deliv...High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode delivered superior electrochemical performance.However,the sulfur content of S@pPAN is relatively low(<50 wt%),which significantly limits the energy density.Herein,a hydrogel SA-Cu binder was proposed with a crosslinking network constructed by Cu^(2+) ions.The introduction of Cu^(2+) ions enabled excellent electrochemical behaviors of S@pPAN cathode even with high sulfur content of 52.6 wt% via chemical interaction with sulfur and polysulfide.Moreover,a favorable cathode interphase was formed containing electrochemically active and conductive CuSx.S@pPAN/SA-Cu exhibited a high sulfur utilization of 85.3%,long cycling stability over 1000 cycles and remarkable capacity of 1200 mAh g_(s)^(-1) even at10 C.Furthermore,ascribed to the improved electrode structure,high-loading electrode(sulfur loading:4 mg cm^(-2)) displayed stable cycling with areal capacity of 5.26 mAh cm^(-2)(1315 mAh g_(s)^(-1)) after 40 cycles.This study provides new directions to prepare high-sulfur content and high-loading S@pPAN cathode for higher energy density.展开更多
High Ga content Cu(In,Ga)Se2 thin films incorporated sulfur were prepared by sequential evaporation from CuGaSe2 and CuInSe2 ternary compounds and subsequently Ga2Se3, In2Se3 and In2S3 binary compounds. The In2S3/(Ga2...High Ga content Cu(In,Ga)Se2 thin films incorporated sulfur were prepared by sequential evaporation from CuGaSe2 and CuInSe2 ternary compounds and subsequently Ga2Se3, In2Se3 and In2S3 binary compounds. The In2S3/(Ga2Se3+ In2Se3) ratio was varied from 0 to 0.13, and the properties of the thin films were investigated. XRD studies demonstrated that the prepared thin films had a chalcopyrite Cu(In,Ga)Se2 structure. The S/(Se+S) mole ratio in the thin films was within the range from 0 to 0.04. The band gaps of Cu(In,Ga)Se2 thin films increased from 1.30 eV to 1.59 eV with increasing the ?In2S3 /(Ga2Se3+ In2Se3) ratio.展开更多
To deal with the exploitation difficulties of gas fields in Northeast Sichuan with deep marine strata, after researching the relative standards domestic and abroad extensively, summarizing and promoting the successful...To deal with the exploitation difficulties of gas fields in Northeast Sichuan with deep marine strata, after researching the relative standards domestic and abroad extensively, summarizing and promoting the successful experiences and failure lessons of project construction technology application scientifically, Sinopec has established an integrated technical standard system for the exploration and development of ultra deep and high sour gas fields. The system consists of 51 enterprise standards and covers 7 professions including geophysical prospecting, drilling, drilling log, well logging, gas formation test and production, sour gas gathering and transferring system, and HSE (health,safety,environment). It guides and guarantees the safe, high-quality and high-efficiency project construction effectively by means of enhancing the engineering design criterion, recommending the data processing and interpretation methods, identifying the requirements of operation and field inspection and standardizing the application of technical equipments.展开更多
An optimized graphene/RuO2/S composite is prepared by hydrothermal growth of RuO2 particles on graphene oxide sheets as the positive electrode for rechargeable lithium-sulfur batteries. The electrode with 6.1 wt% RuO2...An optimized graphene/RuO2/S composite is prepared by hydrothermal growth of RuO2 particles on graphene oxide sheets as the positive electrode for rechargeable lithium-sulfur batteries. The electrode with 6.1 wt% RuO2 nanocrystals and a high sulfur content of 79.0 wt% delivers an optimal electrochemical performance with high residual capacities of 508 mAh g-1 after 200 cycles and 389 m Ah g-1 after800 cycles at 1 C with a low capacity decay of 0.054%. The RuO2 nanocrystals promote the redox reaction kinetics and facilitate the transformation of sulfur chemistry, leading to large improvements in reversibility and rate capability of the composite electrode. The density functional theory calculations signify the formation of Li–O and Ru–S bonds through chemical interactions between RuO2 and Li polysulfides while the adsorption energies between graphene and polysulfide species are much higher in the presence of RuO2 than that of the neat graphene acting alone. These discoveries support the efficient entrapment of polysulfides by the composite electrode to the benefit of enhanced cyclic stability of the battery.展开更多
Lithium-sulfur(Li-S)batteries are the promising next-generation secondary energy storage systems,because of their advantages of high energy density and environmental friendliness.Among numerous cathode materials,organ...Lithium-sulfur(Li-S)batteries are the promising next-generation secondary energy storage systems,because of their advantages of high energy density and environmental friendliness.Among numerous cathode materials,organosulfur polymer materials have received extensive attentions because of their controllable structure and uniform sulfur distribution.However,the sulfur content of most organosulfur polymer cathodes is limited(S content<60%)due to the addition of large amounts of conductive agents and binders,which adversely affects the energy density of Li-S batteries.Herein,a hyperbranched sulfur-rich polymer based on modified polyethyleneimine(Ath-PEI)named carbon nanotubeentangled poly(allyl-terminated hyperbranched ethyleneimine-random-sulfur)(CNT/Ath-PEI@S)was prepared by sulfur polymerization and used as a Li-S battery cathode.The high intrinsic viscosity of Ath-PEI provided considerable adhesion and avoided the addition of PVDF binder,thereby increasing the sulfur content of cathodes to 75%.Moreover,considering the uniform distribution of elemental sulfur by the polymer,the utilization of sulfur was successfully improved,thus improving the rate capability and discharge capacity of the battery.The binder-free,sulfur-rich polymer cathode exhibited ultra-high initial discharge capacity(1520.7 mAh g^(−1) at 0.1 C),and high rate capability(804 mAh g^(−1) at 2.0 C).And cell-level calculations show that the electrode exhibits an initial capacity of 942.3 mAh g^(−1) electrode,which is much higher than those of conventional sulfur-polymer electrodes reported in the literature.展开更多
基金supported by National Natural Science Foundation of China(21903001)the Joint Funds of the National Natural Science Foundation of China(Grant No.U1865207)+3 种基金Science and Technology Innovation Platform,China(No.2018RS3070)PhD Start-up Foundation of Hengyang Normal University,China(19QD10)Scientific Research Fund of Hunan Provincial Education Department,China(No.20A062)Natural Science Foundation of Anhui Province,China(1908085QB58。
文摘Here we proposed a novel approach to greatly enhance the electrochemical performance of Li-S batteries by designing a composite electrode material composed of a core-shell structure of S@Pt composite(sulfur content,85%)grown on the S surface.The platinum(Pt)nanosheets provide physical barrier and strong chemical binding to anchor LiPSs and improve the electronic conductivity of S.Significantly,by introducing carbon nanofibers(CNFs)as the interlayer,we achieved outstanding Li-S battery with a high initial discharge capacity of 1040 mAh g^(-1)at 1.0C and a reversible capacity of 742 mAh g^(-1)after 350 cycles,demonstrating its excellent long-term cycling stability with a low capacity decay rate of 0.08%per cycle.According to the density functional theory(DFT)calculations,we proposed that the superior performance is attributed to the cooperative effects of the strong interfacial interaction between Pt(111)surface and the S8 molecule,and very low reaction energy of decomposition,−6.4eV.
基金supported by Scientific and Technological Key Project of Shanxi Province(20191102003)National Key Research and Development Program(2016YFA0202500)+1 种基金the National Natural Science Foundation of China(21776019)Beijing Natural Science Foundation(L182021)。
文摘Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm^(-2) and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.
基金the National Natural Science Foundation of China(52103093)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2021QNRC001)+2 种基金the Jiangxi Provincial Natural Science Foundation(20212BAB214048)Science and Technology Support Project of Shangrao(2020L009,2021J006)Science and Technological Project of Education Department of Jiangxi(GJJ211704)for funding their contributions to this paper。
文摘Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.
基金financially supported by the National Natural Science Foundation of China (U1705255 and 21975158)the Program of Shanghai Academic Research Leader (20XD1401900)the Key-Area Research and Development Program of Guangdong Province (2019B090908001)。
文摘High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode delivered superior electrochemical performance.However,the sulfur content of S@pPAN is relatively low(<50 wt%),which significantly limits the energy density.Herein,a hydrogel SA-Cu binder was proposed with a crosslinking network constructed by Cu^(2+) ions.The introduction of Cu^(2+) ions enabled excellent electrochemical behaviors of S@pPAN cathode even with high sulfur content of 52.6 wt% via chemical interaction with sulfur and polysulfide.Moreover,a favorable cathode interphase was formed containing electrochemically active and conductive CuSx.S@pPAN/SA-Cu exhibited a high sulfur utilization of 85.3%,long cycling stability over 1000 cycles and remarkable capacity of 1200 mAh g_(s)^(-1) even at10 C.Furthermore,ascribed to the improved electrode structure,high-loading electrode(sulfur loading:4 mg cm^(-2)) displayed stable cycling with areal capacity of 5.26 mAh cm^(-2)(1315 mAh g_(s)^(-1)) after 40 cycles.This study provides new directions to prepare high-sulfur content and high-loading S@pPAN cathode for higher energy density.
文摘High Ga content Cu(In,Ga)Se2 thin films incorporated sulfur were prepared by sequential evaporation from CuGaSe2 and CuInSe2 ternary compounds and subsequently Ga2Se3, In2Se3 and In2S3 binary compounds. The In2S3/(Ga2Se3+ In2Se3) ratio was varied from 0 to 0.13, and the properties of the thin films were investigated. XRD studies demonstrated that the prepared thin films had a chalcopyrite Cu(In,Ga)Se2 structure. The S/(Se+S) mole ratio in the thin films was within the range from 0 to 0.04. The band gaps of Cu(In,Ga)Se2 thin films increased from 1.30 eV to 1.59 eV with increasing the ?In2S3 /(Ga2Se3+ In2Se3) ratio.
文摘To deal with the exploitation difficulties of gas fields in Northeast Sichuan with deep marine strata, after researching the relative standards domestic and abroad extensively, summarizing and promoting the successful experiences and failure lessons of project construction technology application scientifically, Sinopec has established an integrated technical standard system for the exploration and development of ultra deep and high sour gas fields. The system consists of 51 enterprise standards and covers 7 professions including geophysical prospecting, drilling, drilling log, well logging, gas formation test and production, sour gas gathering and transferring system, and HSE (health,safety,environment). It guides and guarantees the safe, high-quality and high-efficiency project construction effectively by means of enhancing the engineering design criterion, recommending the data processing and interpretation methods, identifying the requirements of operation and field inspection and standardizing the application of technical equipments.
基金financially supported by the Research Grants Council(GRF Projects 16212814 and 16208718)the Innovation and Technology Commission(ITF Project Code ITS/001/17)of Hong Kong SAR+1 种基金the technical assistance from the Materials Characterization and Preparation Facilities(MCPF)the Advanced Engineering Materials Facilities(AEMF)of HKUST
文摘An optimized graphene/RuO2/S composite is prepared by hydrothermal growth of RuO2 particles on graphene oxide sheets as the positive electrode for rechargeable lithium-sulfur batteries. The electrode with 6.1 wt% RuO2 nanocrystals and a high sulfur content of 79.0 wt% delivers an optimal electrochemical performance with high residual capacities of 508 mAh g-1 after 200 cycles and 389 m Ah g-1 after800 cycles at 1 C with a low capacity decay of 0.054%. The RuO2 nanocrystals promote the redox reaction kinetics and facilitate the transformation of sulfur chemistry, leading to large improvements in reversibility and rate capability of the composite electrode. The density functional theory calculations signify the formation of Li–O and Ru–S bonds through chemical interactions between RuO2 and Li polysulfides while the adsorption energies between graphene and polysulfide species are much higher in the presence of RuO2 than that of the neat graphene acting alone. These discoveries support the efficient entrapment of polysulfides by the composite electrode to the benefit of enhanced cyclic stability of the battery.
基金CNPC Innovation Found,Grant/Award Number:2021DQ02-1001Liao Ning Revitalization Talents Program,Grant/Award Number:XLYC1907144+2 种基金Xinghai Talent Cultivation Plan,Grant/Award Number:X20200303National Outstanding Youth Science Fund,Grant/Award Number:52222314Fundamental Research Funds for the Central Universities,Grant/Award Numbers:DUT22JC02,DUT22LAB605。
文摘Lithium-sulfur(Li-S)batteries are the promising next-generation secondary energy storage systems,because of their advantages of high energy density and environmental friendliness.Among numerous cathode materials,organosulfur polymer materials have received extensive attentions because of their controllable structure and uniform sulfur distribution.However,the sulfur content of most organosulfur polymer cathodes is limited(S content<60%)due to the addition of large amounts of conductive agents and binders,which adversely affects the energy density of Li-S batteries.Herein,a hyperbranched sulfur-rich polymer based on modified polyethyleneimine(Ath-PEI)named carbon nanotubeentangled poly(allyl-terminated hyperbranched ethyleneimine-random-sulfur)(CNT/Ath-PEI@S)was prepared by sulfur polymerization and used as a Li-S battery cathode.The high intrinsic viscosity of Ath-PEI provided considerable adhesion and avoided the addition of PVDF binder,thereby increasing the sulfur content of cathodes to 75%.Moreover,considering the uniform distribution of elemental sulfur by the polymer,the utilization of sulfur was successfully improved,thus improving the rate capability and discharge capacity of the battery.The binder-free,sulfur-rich polymer cathode exhibited ultra-high initial discharge capacity(1520.7 mAh g^(−1) at 0.1 C),and high rate capability(804 mAh g^(−1) at 2.0 C).And cell-level calculations show that the electrode exhibits an initial capacity of 942.3 mAh g^(−1) electrode,which is much higher than those of conventional sulfur-polymer electrodes reported in the literature.