The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(...Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.展开更多
The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior ele...The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior electronic conductivity and high electrocatalytic activity,e.g.,heterostructures,is a promising strategy to solve the above obstacles.Herein,a binary metal sulfide MnS-MoS_(2) heterojunction electrocatalyst is first designed for the construction of high-sulfur-loaded and durable Li-S batteries.The MnS-MoS_(2) p-n heterojunction shows a unique structure of MoS_(2) nanosheets decorated with ample MnS nanodots,which contributes to the formation of a strong built-in electric field at the two-phase interface.The MnS-MoS_(2) hybrid host shows strong soluble polysulfide affinity,enhanced electronic conductivity,and exceptional catalytic effect on sulfur reduction.Benefiting from the synergistic effect,the as-derived S/MnS-MoS_(2) cathode delivers a superb rate capability(643 m A h g^(-1)at 6 C)and a durable cyclability(0.048%decay per cycle over 1000 cycles).More impressively,an areal capacity of 9.9 m A h cm^(-2)can be achieved even under an extremely high sulfur loading of 14.7 mg cm^(-2)and a low electrolyte to sulfur ratio of 2.9μL mg^(-1).This work provides an in-depth understanding of the interfacial catalytic effect of binary metal compound heterojunctions on sulfur reaction kinetics.展开更多
Acid mine drainage (AMD) is one of the major problems in high sulfur coal mining areas generating acidic water. The acidic mine water generated contain hazardous elements in varying concentrations. The Northeastern ...Acid mine drainage (AMD) is one of the major problems in high sulfur coal mining areas generating acidic water. The acidic mine water generated contain hazardous elements in varying concentrations. The Northeastern Indian coalfield produces considerable amounts of AMD. The AMD and metal leaching from coal and mine over burden (OB) are the two important naturally occurring processes. In order to know the AMD potential, the aqueous leaching experiment of a few coal and OB samples from the Ledo colliery of the Northeastern coalfield, Mergherita (India), at different time periods (1, 3, 5, and 8 h) and at different temperatures (25, 45, 65, and 90℃) were performed in the laboratory. The physico- chemical analysis of the aqueous leachates shows the pH, electrical conductivity (EC), and total dissolved solid (TDS) in the range of 1.62-3.52, 106-2006 μs/cm, and 106-1003 ppm for the raw coal samples respectively. The OB samples produced pH, EC, and TDS in the range of 3.68-6.92, 48.6-480 μs/cm, and 69.5-240 ppm respectively. From the study, it was revealed that the concentrations of major (Si, A1, K, Na, Fe, Ca, Mg), minor (Mn) and trace/hazardous elements (As, Ba, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, Zn) considerably change with leaching time as well as with leaching temperature. Out of these elements As, Cd, Hg, Pb, Cr, and Se are of greater environmental importance. Alteration of the physico-chemical structure of the coal and OB samples resulting from leaching was also studied by field emission scanning electron microscope- energy-dispersive X-ray spectroscopy method. The release of the potentially hazardous elements from the raw coal and OB during leaching time periods to the leachates was detected by inductively coupled plasma-atomic emission spectroscopy and ion-chromatographic analyses. The major minerals found in coal and OB are quartz (SiO2), pyrite (FeS2), hematite, marcasite, and kaolinite. The association of different functional groups in minerals and their mode of association were studied by Fourier-transform infrared spectroscopy and X-ray diffraction analytical techniques. The present laboratory study will be useful in relating the characteristics of aqueous leaching from coal and mine OB with the natural weathering condition at the coal mine area.展开更多
The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processe...The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processes.Two-dimensional(2D)few layered black phosphorus with fully exposed atoms and high sulfur affinity can be potential lithium-sulfur battery electrocatalysts,which,however,have limitations of restricted catalytic activity and poor electrochemical/chemical stability.To resolve these issues,we developed a multifunctional metal-free catalyst by covalently bonding few layered black phosphorus nanosheets with nitrogen-doped carbon-coated multiwalled carbon nanotubes(denoted c-FBP-NC).The experimental characterizations and theoretical calculations show that the formed polarized P-N covalent bonds in c-FBP-NC can efficiently regulate electron transfer from NC to FBP and significantly promote the capture and catalysis of lithium polysulfides,thus alleviating the shuttle effect.Meanwhile,the robust 1D-2D interwoven structure with large surface area and high porosity allows strong physical confinement and fast mass transfer.Impressively,with c-FBP-NC as the sulfur host,the battery shows a high areal capacity of 7.69 mAh cm^(−2) under high sulfur loading of 8.74 mg cm^(−2) and a low electrolyte/sulfur ratio of 5.7μL mg^(−1).Moreover,the assembled pouch cell with sulfur loading of 4 mg cm^(−2) and an electrolyte/sulfur ratio of 3.5μL mg^(−1) shows good rate capability and outstanding cyclability.This work proposes an interfacial and electronic structure engineering strategy for fast and durable sulfur electrochemistry,demonstrating great potential in lithium-sulfur batteries.展开更多
Coal has been used as an energy resource around the world, primarily for the generation of electricity. The cleaning of coal by removing its unwanted sulfur and mineral matter components is utmost essential before the...Coal has been used as an energy resource around the world, primarily for the generation of electricity. The cleaning of coal by removing its unwanted sulfur and mineral matter components is utmost essential before their gainful utilizations. The ionic liquids (ILs) are considered as non-toxic solvents for using in different industrial processes. The effect of two ILs namely, 1-n-butyl, 3-methylimidazolium tetrafluoro borate (ILl) and 1-n-butyl, 3-methylimidazolium chloride (IL2) in oxidative de-sulfurization and de-ashing of two industrially important high sulfur coal samples from Meghalaya (India) is discussed in this paper. The maximum removal of total sulfur, pyritic sulfur, sulfate sulfur and organic sulfur are observed to be 37.36 %, 62.50 %, 83.33 % and 31.63 % respectively during this oxidative process. The quantitative diffuse reflectance Fourier transform-infrared spectroscopy analysis supports the formation of sulfoxides (S--O) and sulfones (-SO2) and their subsequent removal during the oxidation of the coals in presence of ILs. The X-ray fluorescence combined with near edge X-ray absorption fine structure and scanning electron microscopic studies reveal the removal of mineral matters (ash yields) from the coal samples. The thermogravimetric analysis of the raw and clean coals indicates their high combustion efficiencies and suitability for using in thermal plants. The method is partially green and the ILs could be recovered and reused in the process.展开更多
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfu...Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm^(-2) and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.展开更多
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architec...The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation.A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase(Ti3C2Tx nanosheets) is performed,aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading.The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktej en black,not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host,but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode.The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness,which accounts a little contribution to the thick sulfur electrode;thus,the impacts on the energy density is minimal.By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator,a stable Li-S battery with high sulfur areal loading(5.6 mg cm-2) and high areal capacity(6.4 mAh cm-2) at relatively lean electrolyte is achieved.展开更多
Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainabi...Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur areal loading is vital for the practical applications of Li–S batteries with very high energy density.However,the high sulfur loading in an electrode results in poor rate and cycling performances of batteries in most cases.Herein,we used diameters of 5.0(D5)and 13.0(D13)mm to probe the effect of electrodes with different sizes on the rate and cycling performances under a high sulfur loading(4.5 mg cm^-2).The cell with D5 sulfur cathode exhibits better rate and cycling performances comparing with a large(D13)cathode.Both the high concentration of lithium polysulfides and corrosion of lithium metal anode impede rapid kinetics of sulfur redox reactions,which results in inferior battery performance of the Li–S cell with large diameter cathode.This work highlights the importance of rational matching of the large sulfur cathode with a high areal sulfur loading,carbon modified separators,organic electrolyte,and Li metal anode in a pouch cell,wherein the sulfur redox kinetics and lithium metal protection should be carefully considered under the flooded lithium polysulfide conditions in a working Li–S battery.展开更多
Super-high sulfur coal resultes in serious coal-derived pollution but might have a particular genesis. Thus,a columnar section of an Early Permian Liangshan Formation coal seam. weight average sulfur content 5.80%,fro...Super-high sulfur coal resultes in serious coal-derived pollution but might have a particular genesis. Thus,a columnar section of an Early Permian Liangshan Formation coal seam. weight average sulfur content 5.80%,from Kaili,eastern Guizhou,was studied using the methods of coal petrology and geochemistry. The results show that the seam was apparently formed in seawater-effected peat bogs that developed in two distinct stages. During the first stage various layers were formed in a supratidal bog and have a composition characteristic of a bog with a gradually decreasing sea-water effect,decreasing water dynamics,and an increasingly reductive environment. Layers in the upper seam formed during a second stage in an intertidal bog. These layers are very high in total and inorganic sulfur,the ratios of or-ganic/inorganic sulfur and V/I drop,they are high in coal ash yield and have a high ash component index,considerable barkinite,oxidized and detrital macerals,have a porphyroclatic micro-structure and are rich in pyrite,all of which indi-cate the coal-forming environment had higher oxidation potential,strong and roiling water dynamics,and intermittent exposure to a sulfur rich environment.展开更多
High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode deliv...High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode delivered superior electrochemical performance.However,the sulfur content of S@pPAN is relatively low(<50 wt%),which significantly limits the energy density.Herein,a hydrogel SA-Cu binder was proposed with a crosslinking network constructed by Cu^(2+) ions.The introduction of Cu^(2+) ions enabled excellent electrochemical behaviors of S@pPAN cathode even with high sulfur content of 52.6 wt% via chemical interaction with sulfur and polysulfide.Moreover,a favorable cathode interphase was formed containing electrochemically active and conductive CuSx.S@pPAN/SA-Cu exhibited a high sulfur utilization of 85.3%,long cycling stability over 1000 cycles and remarkable capacity of 1200 mAh g_(s)^(-1) even at10 C.Furthermore,ascribed to the improved electrode structure,high-loading electrode(sulfur loading:4 mg cm^(-2)) displayed stable cycling with areal capacity of 5.26 mAh cm^(-2)(1315 mAh g_(s)^(-1)) after 40 cycles.This study provides new directions to prepare high-sulfur content and high-loading S@pPAN cathode for higher energy density.展开更多
The reverse flocculation method for removing pyritic sulfur from high sulfor coals has been conceptually beveloped and investigated. The tentative tests on China high sulfur coals have shown that this advanced physica...The reverse flocculation method for removing pyritic sulfur from high sulfor coals has been conceptually beveloped and investigated. The tentative tests on China high sulfur coals have shown that this advanced physical separation techaique can be very efficient in coal desulfurization, provided the process parameters are properly optimized. Under the circumsances of acquiring high coal recovery, the total sulfur rejection with four kinds of coal samples normally falls in tbe range 57% to 71 % by one-step reverse flocculation, and within the range 40% to 59% by one-step normal flocculation process.展开更多
High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation condit...High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation conditions reveals a huge gap between the demands for practical batteries and those in the literature.Low sulfur loading,a high electrolyte/sulfur(E/S)ratio and excess anodes for lab-scale LSBs significantly offset their high-energy merit.To approach practical LSBs,high loading and lean electrolyte parameters are needed,which involve budding challenges of slow charge transfer,polysulfide precipitation and severe shuttle effects.To track these obstacles,the exploration of electrocatalysts to immobilize polysulfides and accelerate Li-S redox kinetics has been widely reported.Herein,this review aims to survey state-of-the-art catalytic materials for practical LSBs with emphasis on elucidating the correlation among catalyst design strategies,material structures and electrochemical performance.We also statistically evaluate the state-of-the-art catalyst-modified LSBs to identify the remaining discrepancy between the current advancements and the real-world requirements.In closing,we put forward our proposal for a catalytic material study to help realize practical LSBs.展开更多
Coal is one of the important energy sources, but it causes serious environmental problems such as air pollution, acid rain and greenhouse effects. Sulfur in coal is one of the responsibilities of these negative effect...Coal is one of the important energy sources, but it causes serious environmental problems such as air pollution, acid rain and greenhouse effects. Sulfur in coal is one of the responsibilities of these negative effects. Coal includes two types of sulfur: organic and inorganic. While inorganic sulfur can be completely removed with physical desulfurization methods, organic sulfur can be removed only by chemical desulfurization methods. But chemical methods are not only expensive but also difficult processes. Firstly in desulfurization, types of the sulfur content in coal should be well characterized. High sulfur Gediz-Turkey coal has been chosen to this study. This coal basin is located in the centre of the Turkey. In this study, characterization and desulfurization possibilities of high sulfur Gediz coal were investigated. For this purpose, several physical and chemical characterization methods such as proximate and ultimate coal analysis (ash, calorific value, volatile matter, moisture and sulfur analysis), mineralogical and petrographic analysis, fourier transform infrared spectroscopy, scanning electron microscope were used. Results of these analysis are shown that Gediz coals include 3.15% pyritic sulfur and 2.89% organic sulfur. Removing pyritic sulfur from Gediz-Turkey coal with physical methods such as gravity and sink-float separation is not possible because pyrite particle has 1-2 micron liberation size in coal.展开更多
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batterie...The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm^(-2) delivers a stable area capacity of 6.6 mAh cm^(-2) over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm^(-2) over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.展开更多
To lower the cost of bauxite electrolysis desulfurization using NaOH solution as the supporting electrolyte, effects of electrolyte recycling on bauxite electrolysis desulfurization were investigated. The results in...To lower the cost of bauxite electrolysis desulfurization using NaOH solution as the supporting electrolyte, effects of electrolyte recycling on bauxite electrolysis desulfurization were investigated. The results indicate that electrode corrosion, cell voltage, the desulfurization rate and the pH value of the electrolyte have no obvious changes with the increase of cycle times. Additionally, there were some transitive valence S-containing ions in electrolyte after the electrolysis, such as SO3^2-,S2O3^2- . However, most of the sulfur in bauxite was eventually oxidized into SO4^2- into the electrolyte, and these S-containing ions did not affect the recycling utilization for electrolyte.展开更多
The major challenge for realistic application of Li-S batteries lies in the great difficulty in breaking through the obstacles of the sluggish kinetics and polysulfides shuttle of the sulfur cathode at high sulfur loa...The major challenge for realistic application of Li-S batteries lies in the great difficulty in breaking through the obstacles of the sluggish kinetics and polysulfides shuttle of the sulfur cathode at high sulfur loading for continuously high sulfur utilization during prolonged charge-discharge cycles.Here we demonstrate that large percentage of sulfur can be effectively incorporated within a three-dimensional(3D)nanofiber network of high quality graphene from chemical vapor deposition(CVD),through a simple ball-milling process.While high quality graphene network provided continuous and durable channels to enable efficient transport of lithium ions and electrons,the in-situ sulfur doping from the alloying effect of ball milling facilitated desirable affinity with entire sulfur species to prevent sulfur loss and highly active sites to propel sulfur redox reactions over cycling.This resulted in remarkable rate-performance and excellent cycling stability,together with large areal capacity at very high sulfur mass loading(Specific capacity over 666 mAh g-1after 300 cycles at 0.5 C,and areal capacity above 5.2 mAh cm-2at 0.2C at sulfur loading of 8.0 mg cm-2 and electrolyte/sulfur(E/S)ratio of 8μL mg-1;and high reversible areal capacities of 13.1 m Ah cm-2 at a sulfur load of 15 mg cm-2 and E/S of 5μL mg-1).展开更多
Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3...Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3 D free-standing sulfur cathode scaffold is rationally designed and fabricated by coaxially coating polar Ti_3 C_2 T_x flakes on sulfur-impregnated carbon cloth(Ti_3 C_2 T_x@S/CC) to achieve high loading and high energy density Li-S batteries,in which,the flexible CC substrate with highly porous structure can accommodate large amounts of sulfur and ensure fast electron transfer,while the outer-coated Ti_3 C_2 T_x can serve as a polar and conductive protective layer to further promote the conductivity of the whole electrode,achieve physical blocking and chemical anchoring of lithium-polysulfides as well as catalyze their conversion.Due to these advantages,at a sulfur loading of 4 mg cm^(-2),Li-S cells with Ti_3 C_2 T_x@S/CC cathodes can deliver outstanding cycling stability(746.1 mAh g^(-1) after 200 cycles at1 C),superb rate performance(866.8 mAh g^(-1) up to 2 C) and a high specific energy density(564.2 Wh kg^(-1) after 100 cycles at 0.5 C).More significantly,they also show the commercial potential that can compete with current lithium-ion batteries due to the high areal capacity of 6.7 mAh cm^(-2) at the increased loading of 8 mg cm^(-2).展开更多
Influence of factors such as potential of electrolyte, electrolyzing time, concentration of electrolyte, and pH value on flotation and desulfurization of coal was researched. The result shows that the electrochemical ...Influence of factors such as potential of electrolyte, electrolyzing time, concentration of electrolyte, and pH value on flotation and desulfurization of coal was researched. The result shows that the electrochemical reduction can enhance the desulfurization effect and increase the yield of clean coal under certain conditions. So it is an effective method.展开更多
The Permian coal in southwest China contains highest sulfur among the Chinese coal .Compositional variations of sumir in coal are mainly controlled by palaogeographital environmentsduring peat accumulation. High organ...The Permian coal in southwest China contains highest sulfur among the Chinese coal .Compositional variations of sumir in coal are mainly controlled by palaogeographital environmentsduring peat accumulation. High organic sulfur coal is formed in peat swamp developing in tidal flat of limited carbonate platform, and it is provided with especial petrologital and geochemical characteristics, and its organoschr-containing compounds are mainly thiophene series. The macroscopitaland microscopical shapes or types of pyrites in Late Permisn coal are diversined. Bituminous coal and anthracite are diamagnetic, but the pyrites are paramagnetic. The magnetic susceptibility oftbe pyrites is depended on the content of paramagnatic elements associnted with pyrites.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金the National Natural Science Foundation of China(52103093)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2021QNRC001)+2 种基金the Jiangxi Provincial Natural Science Foundation(20212BAB214048)Science and Technology Support Project of Shangrao(2020L009,2021J006)Science and Technological Project of Education Department of Jiangxi(GJJ211704)for funding their contributions to this paper。
文摘Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.
基金financial support from the National Natural Science Foundation of China (NSFC,21875155,22032004)the support of the National Key Research and Development Program of China (2021YFA1201502)the support of the Nanqiang Young Top-notch Talent Fellowship in Xiamen University。
文摘The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior electronic conductivity and high electrocatalytic activity,e.g.,heterostructures,is a promising strategy to solve the above obstacles.Herein,a binary metal sulfide MnS-MoS_(2) heterojunction electrocatalyst is first designed for the construction of high-sulfur-loaded and durable Li-S batteries.The MnS-MoS_(2) p-n heterojunction shows a unique structure of MoS_(2) nanosheets decorated with ample MnS nanodots,which contributes to the formation of a strong built-in electric field at the two-phase interface.The MnS-MoS_(2) hybrid host shows strong soluble polysulfide affinity,enhanced electronic conductivity,and exceptional catalytic effect on sulfur reduction.Benefiting from the synergistic effect,the as-derived S/MnS-MoS_(2) cathode delivers a superb rate capability(643 m A h g^(-1)at 6 C)and a durable cyclability(0.048%decay per cycle over 1000 cycles).More impressively,an areal capacity of 9.9 m A h cm^(-2)can be achieved even under an extremely high sulfur loading of 14.7 mg cm^(-2)and a low electrolyte to sulfur ratio of 2.9μL mg^(-1).This work provides an in-depth understanding of the interfacial catalytic effect of binary metal compound heterojunctions on sulfur reaction kinetics.
文摘Acid mine drainage (AMD) is one of the major problems in high sulfur coal mining areas generating acidic water. The acidic mine water generated contain hazardous elements in varying concentrations. The Northeastern Indian coalfield produces considerable amounts of AMD. The AMD and metal leaching from coal and mine over burden (OB) are the two important naturally occurring processes. In order to know the AMD potential, the aqueous leaching experiment of a few coal and OB samples from the Ledo colliery of the Northeastern coalfield, Mergherita (India), at different time periods (1, 3, 5, and 8 h) and at different temperatures (25, 45, 65, and 90℃) were performed in the laboratory. The physico- chemical analysis of the aqueous leachates shows the pH, electrical conductivity (EC), and total dissolved solid (TDS) in the range of 1.62-3.52, 106-2006 μs/cm, and 106-1003 ppm for the raw coal samples respectively. The OB samples produced pH, EC, and TDS in the range of 3.68-6.92, 48.6-480 μs/cm, and 69.5-240 ppm respectively. From the study, it was revealed that the concentrations of major (Si, A1, K, Na, Fe, Ca, Mg), minor (Mn) and trace/hazardous elements (As, Ba, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, Zn) considerably change with leaching time as well as with leaching temperature. Out of these elements As, Cd, Hg, Pb, Cr, and Se are of greater environmental importance. Alteration of the physico-chemical structure of the coal and OB samples resulting from leaching was also studied by field emission scanning electron microscope- energy-dispersive X-ray spectroscopy method. The release of the potentially hazardous elements from the raw coal and OB during leaching time periods to the leachates was detected by inductively coupled plasma-atomic emission spectroscopy and ion-chromatographic analyses. The major minerals found in coal and OB are quartz (SiO2), pyrite (FeS2), hematite, marcasite, and kaolinite. The association of different functional groups in minerals and their mode of association were studied by Fourier-transform infrared spectroscopy and X-ray diffraction analytical techniques. The present laboratory study will be useful in relating the characteristics of aqueous leaching from coal and mine OB with the natural weathering condition at the coal mine area.
基金Jiangsu Provincial Department of Science and Technology,Grant/Award Number:BK20201190Fundamental Research Funds for“Young Talent Support Plan”of Xi'an Jiaotong University,Grant/Award Number:HG6J003+1 种基金“1000-Plan program”of Shaanxi Province and the Velux Foundations through the research center V-Sustain,Grant/Award Number:9455National Key R&D Program of China,。
文摘The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processes.Two-dimensional(2D)few layered black phosphorus with fully exposed atoms and high sulfur affinity can be potential lithium-sulfur battery electrocatalysts,which,however,have limitations of restricted catalytic activity and poor electrochemical/chemical stability.To resolve these issues,we developed a multifunctional metal-free catalyst by covalently bonding few layered black phosphorus nanosheets with nitrogen-doped carbon-coated multiwalled carbon nanotubes(denoted c-FBP-NC).The experimental characterizations and theoretical calculations show that the formed polarized P-N covalent bonds in c-FBP-NC can efficiently regulate electron transfer from NC to FBP and significantly promote the capture and catalysis of lithium polysulfides,thus alleviating the shuttle effect.Meanwhile,the robust 1D-2D interwoven structure with large surface area and high porosity allows strong physical confinement and fast mass transfer.Impressively,with c-FBP-NC as the sulfur host,the battery shows a high areal capacity of 7.69 mAh cm^(−2) under high sulfur loading of 8.74 mg cm^(−2) and a low electrolyte/sulfur ratio of 5.7μL mg^(−1).Moreover,the assembled pouch cell with sulfur loading of 4 mg cm^(−2) and an electrolyte/sulfur ratio of 3.5μL mg^(−1) shows good rate capability and outstanding cyclability.This work proposes an interfacial and electronic structure engineering strategy for fast and durable sulfur electrochemistry,demonstrating great potential in lithium-sulfur batteries.
文摘Coal has been used as an energy resource around the world, primarily for the generation of electricity. The cleaning of coal by removing its unwanted sulfur and mineral matter components is utmost essential before their gainful utilizations. The ionic liquids (ILs) are considered as non-toxic solvents for using in different industrial processes. The effect of two ILs namely, 1-n-butyl, 3-methylimidazolium tetrafluoro borate (ILl) and 1-n-butyl, 3-methylimidazolium chloride (IL2) in oxidative de-sulfurization and de-ashing of two industrially important high sulfur coal samples from Meghalaya (India) is discussed in this paper. The maximum removal of total sulfur, pyritic sulfur, sulfate sulfur and organic sulfur are observed to be 37.36 %, 62.50 %, 83.33 % and 31.63 % respectively during this oxidative process. The quantitative diffuse reflectance Fourier transform-infrared spectroscopy analysis supports the formation of sulfoxides (S--O) and sulfones (-SO2) and their subsequent removal during the oxidation of the coals in presence of ILs. The X-ray fluorescence combined with near edge X-ray absorption fine structure and scanning electron microscopic studies reveal the removal of mineral matters (ash yields) from the coal samples. The thermogravimetric analysis of the raw and clean coals indicates their high combustion efficiencies and suitability for using in thermal plants. The method is partially green and the ILs could be recovered and reused in the process.
基金supported by Scientific and Technological Key Project of Shanxi Province(20191102003)National Key Research and Development Program(2016YFA0202500)+1 种基金the National Natural Science Foundation of China(21776019)Beijing Natural Science Foundation(L182021)。
文摘Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm^(-2) and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.
基金financially supported by National Key Research and Development Program(No.2019YFA0210600)the Major Technological Innovation Project of Hubei Science and Technology Department(No.2019AAA164)+1 种基金the National Natural Science Foundation of China(No.51972107)the Innovative Research Groups of Hunan Province(No.2019JJ10001)。
文摘The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density,but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation.A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase(Ti3C2Tx nanosheets) is performed,aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading.The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktej en black,not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host,but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode.The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness,which accounts a little contribution to the thick sulfur electrode;thus,the impacts on the energy density is minimal.By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator,a stable Li-S battery with high sulfur areal loading(5.6 mg cm-2) and high areal capacity(6.4 mAh cm-2) at relatively lean electrolyte is achieved.
基金supported by the National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)the National Natural Science Foundation of China(21776019,21805162,51772069,and U1801257)+1 种基金China Postdoctoral Science Foundation(2018M630165)Beijing Key Research and Development Plan(Z181100004518001)
文摘Lithium–sulfur(Li–S)batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur areal loading is vital for the practical applications of Li–S batteries with very high energy density.However,the high sulfur loading in an electrode results in poor rate and cycling performances of batteries in most cases.Herein,we used diameters of 5.0(D5)and 13.0(D13)mm to probe the effect of electrodes with different sizes on the rate and cycling performances under a high sulfur loading(4.5 mg cm^-2).The cell with D5 sulfur cathode exhibits better rate and cycling performances comparing with a large(D13)cathode.Both the high concentration of lithium polysulfides and corrosion of lithium metal anode impede rapid kinetics of sulfur redox reactions,which results in inferior battery performance of the Li–S cell with large diameter cathode.This work highlights the importance of rational matching of the large sulfur cathode with a high areal sulfur loading,carbon modified separators,organic electrolyte,and Li metal anode in a pouch cell,wherein the sulfur redox kinetics and lithium metal protection should be carefully considered under the flooded lithium polysulfide conditions in a working Li–S battery.
基金Projects 40572095 supported by NSFC and 20060290503 by China Ministry of Education
文摘Super-high sulfur coal resultes in serious coal-derived pollution but might have a particular genesis. Thus,a columnar section of an Early Permian Liangshan Formation coal seam. weight average sulfur content 5.80%,from Kaili,eastern Guizhou,was studied using the methods of coal petrology and geochemistry. The results show that the seam was apparently formed in seawater-effected peat bogs that developed in two distinct stages. During the first stage various layers were formed in a supratidal bog and have a composition characteristic of a bog with a gradually decreasing sea-water effect,decreasing water dynamics,and an increasingly reductive environment. Layers in the upper seam formed during a second stage in an intertidal bog. These layers are very high in total and inorganic sulfur,the ratios of or-ganic/inorganic sulfur and V/I drop,they are high in coal ash yield and have a high ash component index,considerable barkinite,oxidized and detrital macerals,have a porphyroclatic micro-structure and are rich in pyrite,all of which indi-cate the coal-forming environment had higher oxidation potential,strong and roiling water dynamics,and intermittent exposure to a sulfur rich environment.
基金financially supported by the National Natural Science Foundation of China (U1705255 and 21975158)the Program of Shanghai Academic Research Leader (20XD1401900)the Key-Area Research and Development Program of Guangdong Province (2019B090908001)。
文摘High-energy density lithium-sulfur(Li-S) batteries have received intensive attention as promising energy storage system.Among diverse sulfur-based cathodes,sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN)cathode delivered superior electrochemical performance.However,the sulfur content of S@pPAN is relatively low(<50 wt%),which significantly limits the energy density.Herein,a hydrogel SA-Cu binder was proposed with a crosslinking network constructed by Cu^(2+) ions.The introduction of Cu^(2+) ions enabled excellent electrochemical behaviors of S@pPAN cathode even with high sulfur content of 52.6 wt% via chemical interaction with sulfur and polysulfide.Moreover,a favorable cathode interphase was formed containing electrochemically active and conductive CuSx.S@pPAN/SA-Cu exhibited a high sulfur utilization of 85.3%,long cycling stability over 1000 cycles and remarkable capacity of 1200 mAh g_(s)^(-1) even at10 C.Furthermore,ascribed to the improved electrode structure,high-loading electrode(sulfur loading:4 mg cm^(-2)) displayed stable cycling with areal capacity of 5.26 mAh cm^(-2)(1315 mAh g_(s)^(-1)) after 40 cycles.This study provides new directions to prepare high-sulfur content and high-loading S@pPAN cathode for higher energy density.
文摘The reverse flocculation method for removing pyritic sulfur from high sulfor coals has been conceptually beveloped and investigated. The tentative tests on China high sulfur coals have shown that this advanced physical separation techaique can be very efficient in coal desulfurization, provided the process parameters are properly optimized. Under the circumsances of acquiring high coal recovery, the total sulfur rejection with four kinds of coal samples normally falls in tbe range 57% to 71 % by one-step reverse flocculation, and within the range 40% to 59% by one-step normal flocculation process.
基金supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region,China(Poly U25216121,Poly U15303219)the National Natural Science Foundation of China for Young Scholar(52102310)the Research Committee of the Hong Kong Polytechnic University(A-PB1 M,1-BBXK,1-CD4 M,and G-UAMV)。
文摘High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation conditions reveals a huge gap between the demands for practical batteries and those in the literature.Low sulfur loading,a high electrolyte/sulfur(E/S)ratio and excess anodes for lab-scale LSBs significantly offset their high-energy merit.To approach practical LSBs,high loading and lean electrolyte parameters are needed,which involve budding challenges of slow charge transfer,polysulfide precipitation and severe shuttle effects.To track these obstacles,the exploration of electrocatalysts to immobilize polysulfides and accelerate Li-S redox kinetics has been widely reported.Herein,this review aims to survey state-of-the-art catalytic materials for practical LSBs with emphasis on elucidating the correlation among catalyst design strategies,material structures and electrochemical performance.We also statistically evaluate the state-of-the-art catalyst-modified LSBs to identify the remaining discrepancy between the current advancements and the real-world requirements.In closing,we put forward our proposal for a catalytic material study to help realize practical LSBs.
文摘Coal is one of the important energy sources, but it causes serious environmental problems such as air pollution, acid rain and greenhouse effects. Sulfur in coal is one of the responsibilities of these negative effects. Coal includes two types of sulfur: organic and inorganic. While inorganic sulfur can be completely removed with physical desulfurization methods, organic sulfur can be removed only by chemical desulfurization methods. But chemical methods are not only expensive but also difficult processes. Firstly in desulfurization, types of the sulfur content in coal should be well characterized. High sulfur Gediz-Turkey coal has been chosen to this study. This coal basin is located in the centre of the Turkey. In this study, characterization and desulfurization possibilities of high sulfur Gediz coal were investigated. For this purpose, several physical and chemical characterization methods such as proximate and ultimate coal analysis (ash, calorific value, volatile matter, moisture and sulfur analysis), mineralogical and petrographic analysis, fourier transform infrared spectroscopy, scanning electron microscope were used. Results of these analysis are shown that Gediz coals include 3.15% pyritic sulfur and 2.89% organic sulfur. Removing pyritic sulfur from Gediz-Turkey coal with physical methods such as gravity and sink-float separation is not possible because pyrite particle has 1-2 micron liberation size in coal.
基金supported by the Double First-Class Construction Funds of Sichuan University and National Natural Science Foundation of China(NNSFC)financial support from the National Science Foundation of China(51873126,51422305,51721091)。
文摘The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm^(-2) delivers a stable area capacity of 6.6 mAh cm^(-2) over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm^(-2) over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.
基金Projects(51004090,51474198)supported by the National Natural Science Foundation of ChinaProject(KF13-03)supported by State Key Laboratory of Advanced Metallurgy University of Science and Technology BeijingProject(2015036)supported by Youth Innovation Promotion Association,Chinese Academy of Sciences
文摘To lower the cost of bauxite electrolysis desulfurization using NaOH solution as the supporting electrolyte, effects of electrolyte recycling on bauxite electrolysis desulfurization were investigated. The results indicate that electrode corrosion, cell voltage, the desulfurization rate and the pH value of the electrolyte have no obvious changes with the increase of cycle times. Additionally, there were some transitive valence S-containing ions in electrolyte after the electrolysis, such as SO3^2-,S2O3^2- . However, most of the sulfur in bauxite was eventually oxidized into SO4^2- into the electrolyte, and these S-containing ions did not affect the recycling utilization for electrolyte.
基金supported by the National Natural Science Foundation of China (Nos.51972287, 51502269)Natural Science Foundation of Henan Province (No.182300410187)Outstanding Young Talent Research Fund of Zhengzhou University (No.1521320023)。
文摘The major challenge for realistic application of Li-S batteries lies in the great difficulty in breaking through the obstacles of the sluggish kinetics and polysulfides shuttle of the sulfur cathode at high sulfur loading for continuously high sulfur utilization during prolonged charge-discharge cycles.Here we demonstrate that large percentage of sulfur can be effectively incorporated within a three-dimensional(3D)nanofiber network of high quality graphene from chemical vapor deposition(CVD),through a simple ball-milling process.While high quality graphene network provided continuous and durable channels to enable efficient transport of lithium ions and electrons,the in-situ sulfur doping from the alloying effect of ball milling facilitated desirable affinity with entire sulfur species to prevent sulfur loss and highly active sites to propel sulfur redox reactions over cycling.This resulted in remarkable rate-performance and excellent cycling stability,together with large areal capacity at very high sulfur mass loading(Specific capacity over 666 mAh g-1after 300 cycles at 0.5 C,and areal capacity above 5.2 mAh cm-2at 0.2C at sulfur loading of 8.0 mg cm-2 and electrolyte/sulfur(E/S)ratio of 8μL mg-1;and high reversible areal capacities of 13.1 m Ah cm-2 at a sulfur load of 15 mg cm-2 and E/S of 5μL mg-1).
基金supported by the National Natural Science Foundation of China (51772069)。
文摘Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3 D free-standing sulfur cathode scaffold is rationally designed and fabricated by coaxially coating polar Ti_3 C_2 T_x flakes on sulfur-impregnated carbon cloth(Ti_3 C_2 T_x@S/CC) to achieve high loading and high energy density Li-S batteries,in which,the flexible CC substrate with highly porous structure can accommodate large amounts of sulfur and ensure fast electron transfer,while the outer-coated Ti_3 C_2 T_x can serve as a polar and conductive protective layer to further promote the conductivity of the whole electrode,achieve physical blocking and chemical anchoring of lithium-polysulfides as well as catalyze their conversion.Due to these advantages,at a sulfur loading of 4 mg cm^(-2),Li-S cells with Ti_3 C_2 T_x@S/CC cathodes can deliver outstanding cycling stability(746.1 mAh g^(-1) after 200 cycles at1 C),superb rate performance(866.8 mAh g^(-1) up to 2 C) and a high specific energy density(564.2 Wh kg^(-1) after 100 cycles at 0.5 C).More significantly,they also show the commercial potential that can compete with current lithium-ion batteries due to the high areal capacity of 6.7 mAh cm^(-2) at the increased loading of 8 mg cm^(-2).
基金The National Natural Science F oundation of China ( 5 0 1740 5 4)
文摘Influence of factors such as potential of electrolyte, electrolyzing time, concentration of electrolyte, and pH value on flotation and desulfurization of coal was researched. The result shows that the electrochemical reduction can enhance the desulfurization effect and increase the yield of clean coal under certain conditions. So it is an effective method.
文摘The Permian coal in southwest China contains highest sulfur among the Chinese coal .Compositional variations of sumir in coal are mainly controlled by palaogeographital environmentsduring peat accumulation. High organic sulfur coal is formed in peat swamp developing in tidal flat of limited carbonate platform, and it is provided with especial petrologital and geochemical characteristics, and its organoschr-containing compounds are mainly thiophene series. The macroscopitaland microscopical shapes or types of pyrites in Late Permisn coal are diversined. Bituminous coal and anthracite are diamagnetic, but the pyrites are paramagnetic. The magnetic susceptibility oftbe pyrites is depended on the content of paramagnatic elements associnted with pyrites.