Model updating for aircraft in a high temperature environment(HTE)is proposed based on the hierarchical method.With this method,the problem can be decomposed into temperature field updating and dynamic structural upda...Model updating for aircraft in a high temperature environment(HTE)is proposed based on the hierarchical method.With this method,the problem can be decomposed into temperature field updating and dynamic structural updating.In order to improve the estimation accuracy,the model updating problem is turned into a multi-objective optimization problem by constructing the objective function which combined with residues of modal frequency and effective modal mass.Then the metamodeling,support vector regression(SVR)is introduced to improve the optimization efficiency,and the solution can be determined by adaptive weighted-sum method(AWS).Finally,the proposed method is tested on a finite element(FE)model of a reentry vehicle model.The results show that the multi-objective model updating method in HTE can identify the input parameters of the temperature field and structure with good accuracy.展开更多
Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determ...Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs) based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle.-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as sele, ction of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM) models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfving learning and generalization performance of LS-SVMs.展开更多
基金supported by the National Natural Science Foundation of China(No.11472132)the Fundamental Research Funds for Central University (No. NJ20160050)the Fundamental Research Funds for Central University(No.NJ2016098)
文摘Model updating for aircraft in a high temperature environment(HTE)is proposed based on the hierarchical method.With this method,the problem can be decomposed into temperature field updating and dynamic structural updating.In order to improve the estimation accuracy,the model updating problem is turned into a multi-objective optimization problem by constructing the objective function which combined with residues of modal frequency and effective modal mass.Then the metamodeling,support vector regression(SVR)is introduced to improve the optimization efficiency,and the solution can be determined by adaptive weighted-sum method(AWS).Finally,the proposed method is tested on a finite element(FE)model of a reentry vehicle model.The results show that the multi-objective model updating method in HTE can identify the input parameters of the temperature field and structure with good accuracy.
文摘Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs) based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle.-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as sele, ction of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM) models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfving learning and generalization performance of LS-SVMs.