A 30 MHz voltage-mode controlled buck converter with fast transient responses is presented.An improved differential difference amplifier(DDA)-based Type-III compensator is proposed to reduce the settling times of the ...A 30 MHz voltage-mode controlled buck converter with fast transient responses is presented.An improved differential difference amplifier(DDA)-based Type-III compensator is proposed to reduce the settling times of the converter during load transients,and to achieve near-optimal transient responses with simple PWM control only.Moreover,a hybrid scheme using a digital linear regulator with automatic transient detection and seamless loop transition is proposed to further improve the transient responses.By monitoring the output voltage of the compensator instead of the output voltage of the converter,the proposed hybrid scheme can reduce undershoot and overshoot effectively with good noise immunity and without interrupting the PWM loop.The converter was fabricated in a 0.13μm standard CMOS process using 3.3 V devices.With an input voltage of 3.3 V,the measured peak efficiencies at the output voltages of 2.4,1.8,and 1.2 V are 90.7%,88%,and 83.6%,respectively.With a load step of 1.25 A and rise and fall times of 2 ns,the measured 1%settling times were 220 and 230 ns,with undershoot and overshoot with PWM control of 72 and 76 mV,respectively.They were further reduced to 36 and 38 mV by using the proposed hybrid scheme,and 1%settling times were also reduced to 125 ns.展开更多
A 10 MHz ripple-based on-time controlled buck converter is presented. A novel low-cost dual ripple compensation, which consists of coupling capacitor compensation and passive equivalent series resistance compensation,...A 10 MHz ripple-based on-time controlled buck converter is presented. A novel low-cost dual ripple compensation, which consists of coupling capacitor compensation and passive equivalent series resistance compensation, is proposed to achieve a fast load transient response and robust stability simultaneously. Implemented in a 2P4M 0.35 um CMOS process, the converter achieves fix-frequency output with a ripple of below 10 mV and an overshoot of 10 mV at 400 mA step load transient response. With width optimization of the power transistors in an ultra-heavy load and PFM control in a light load, the efficiency stays at over 83% for a load range from 20 mA to 1.5 A and the peak efficiency reaches 90.16%.展开更多
文摘A 30 MHz voltage-mode controlled buck converter with fast transient responses is presented.An improved differential difference amplifier(DDA)-based Type-III compensator is proposed to reduce the settling times of the converter during load transients,and to achieve near-optimal transient responses with simple PWM control only.Moreover,a hybrid scheme using a digital linear regulator with automatic transient detection and seamless loop transition is proposed to further improve the transient responses.By monitoring the output voltage of the compensator instead of the output voltage of the converter,the proposed hybrid scheme can reduce undershoot and overshoot effectively with good noise immunity and without interrupting the PWM loop.The converter was fabricated in a 0.13μm standard CMOS process using 3.3 V devices.With an input voltage of 3.3 V,the measured peak efficiencies at the output voltages of 2.4,1.8,and 1.2 V are 90.7%,88%,and 83.6%,respectively.With a load step of 1.25 A and rise and fall times of 2 ns,the measured 1%settling times were 220 and 230 ns,with undershoot and overshoot with PWM control of 72 and 76 mV,respectively.They were further reduced to 36 and 38 mV by using the proposed hybrid scheme,and 1%settling times were also reduced to 125 ns.
文摘A 10 MHz ripple-based on-time controlled buck converter is presented. A novel low-cost dual ripple compensation, which consists of coupling capacitor compensation and passive equivalent series resistance compensation, is proposed to achieve a fast load transient response and robust stability simultaneously. Implemented in a 2P4M 0.35 um CMOS process, the converter achieves fix-frequency output with a ripple of below 10 mV and an overshoot of 10 mV at 400 mA step load transient response. With width optimization of the power transistors in an ultra-heavy load and PFM control in a light load, the efficiency stays at over 83% for a load range from 20 mA to 1.5 A and the peak efficiency reaches 90.16%.