High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC...High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC is also discussed.The experimental results indicate that the capacitance of low frequency MLCC is largely affected by temperature.展开更多
1 Introduction In contrast,1experimental geochemistry is a young subject,but in recent years,the research on experiment of high temperature and high pressure has become an important branch in the parallel subjects of ...1 Introduction In contrast,1experimental geochemistry is a young subject,but in recent years,the research on experiment of high temperature and high pressure has become an important branch in the parallel subjects of traditional mineralogy,petrology,geochemistry and geophysics.It is not only an important and essential way and window to understand geological processes in depth and geological展开更多
As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the tempe...As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the temperature of bars increases when specimen starts to contact with bars, which induces the nonuniform temperature distribution in specimen, and may result in inac-curacy of experimental results. In this paper, the temperature distributions of specimen and bars in high temperature SHPB experiments were investigated while the specimen was heated alone. Firstly, the temperature history of specimen was measured at different initial temperatures by ex-periments, then simulation was carried out. Simulation results were consistent with experimental results by adjusting the thermal contact coefficient between specimen and bars. By this way, the thermal contact coefficient and simulation results were validated, and the proper cold contact times of specimen and bars in high temperature SHPB experiments were discussed. Finally, the results were compared with those in references.展开更多
Center for Analysis and Prediction, China Seismological Bureau, Beijing 100036, China 2) Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the different...The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10 -12 s -l ) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10 -14 s -1 ). The average rheological stress (1 600 MPa) at the strain rate of 10 -12 s -1 stands for the ultimate differential stress of UHPM rocks in the semi brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of l0 -14 - 10 -13 s -l stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.展开更多
Hydrous minerals are important water carriers in the crust and the mantle, especially in the subduction zone. With the recent development of the experimental technique, studies of the electrical conductivity of hydrou...Hydrous minerals are important water carriers in the crust and the mantle, especially in the subduction zone. With the recent development of the experimental technique, studies of the electrical conductivity of hydrous silicate minerals under controlled temperature, pressure and oxygen fugacity, have helped to constrain the water distribution in the Earth's interior. This paper introduces high pressure and temperature experimental study of electrical conductivity measurement of hydrous minerals such as serpentine, talc, brucite, phase A, super hydrous phase B and phase D, and assesses the data quality of the above minerals. The dehydration effect and the pressure effect on the bulk conductivity of the hydrous minerals are specifically emphasized. The conduction mechanism of hydrous minerals and the electrical structure of the subduction zone are discussed based on the available conductivity data. Finally, the potential research fields of the electrical conductivity of hydrous minerals is presented.展开更多
The research studied the influences of high temperature, high pressure, high humidity, noise and other harmful factors in mining conditions on the people health and safety, and investigated the impacts of confined env...The research studied the influences of high temperature, high pressure, high humidity, noise and other harmful factors in mining conditions on the people health and safety, and investigated the impacts of confined environmental on human physiology factors, including temperature, humidity, noise, pressure,toxic and harmful gases in terms of environmental characteristics in underground mines and an artificial intelligence system for simulation of the environment in a confined space of deep mines. Our results show that the systolic pressure, diastolic pressure, mean pressure, heart rate, respiratory rate, typing test speed and memory level percentage are negatively correlated with temperature value, and positively correlated with humidity value; the human temperature and weight are positively correlated with temperature value, and negatively correlated with humidity value. This research lays the foundation for the study of interaction between the deep confined space environment and safety behavior.展开更多
Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperatu...Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion.Speziale-Sarkar-Gatski(SSG) Reynolds stress model,Eddy-Dissipation Model(EDM),Discrete Ordinates Method(DTM) combined with Weighted-Sum-of-Grey Gases Model(WSGG) were employed for the numerical simulation.Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation.Temperature distribution,NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different.Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air.Furthermore,velocity fields,dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.展开更多
A series of crystallization experiments have been carried out by using natural Emeishan Ti-rich hydrous basalts as starting materials at a pressure of 0.5 GPa and temperatures of 800-1000℃to constrain the origin of F...A series of crystallization experiments have been carried out by using natural Emeishan Ti-rich hydrous basalts as starting materials at a pressure of 0.5 GPa and temperatures of 800-1000℃to constrain the origin of Fe-Ti-V oxide ore deposits.Our experimental results demonstrate that the sandwich-and trellis-type ilmenite lamellae in titanomagnetite of layered intrusions can be formed by the reaction of earlier crystallized ilmenite and the evolved parental magma.During evolution of parental basaltic magma,the Fe-Ti oxide should be composed of titanomagnetite+ilmenite in the earlier stage,but changed to titanomagnetite+titanomagnetite-ilmenite intergrowth±ilmenite at the later stage.Accordingly,the Panzhihua Fe-Ti oxide ores,which are mainly composed of titanomagnetite,should be formed earlier than the adjacent gabbro,in which titanomagnetite-ilmenite intergrowth is the major form of the Fe-Ti oxide.展开更多
文摘High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC is also discussed.The experimental results indicate that the capacitance of low frequency MLCC is largely affected by temperature.
基金project was jointly funded by the Funds for the program of the National Natural Science Foundation (Noes. 41572060, U1133602)Projects of YM Lab (2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction In contrast,1experimental geochemistry is a young subject,but in recent years,the research on experiment of high temperature and high pressure has become an important branch in the parallel subjects of traditional mineralogy,petrology,geochemistry and geophysics.It is not only an important and essential way and window to understand geological processes in depth and geological
文摘As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the temperature of bars increases when specimen starts to contact with bars, which induces the nonuniform temperature distribution in specimen, and may result in inac-curacy of experimental results. In this paper, the temperature distributions of specimen and bars in high temperature SHPB experiments were investigated while the specimen was heated alone. Firstly, the temperature history of specimen was measured at different initial temperatures by ex-periments, then simulation was carried out. Simulation results were consistent with experimental results by adjusting the thermal contact coefficient between specimen and bars. By this way, the thermal contact coefficient and simulation results were validated, and the proper cold contact times of specimen and bars in high temperature SHPB experiments were discussed. Finally, the results were compared with those in references.
基金State Natural Science Foundation of China (10032040 and 49874013).
文摘Center for Analysis and Prediction, China Seismological Bureau, Beijing 100036, China 2) Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
文摘The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10 -12 s -l ) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10 -14 s -1 ). The average rheological stress (1 600 MPa) at the strain rate of 10 -12 s -1 stands for the ultimate differential stress of UHPM rocks in the semi brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of l0 -14 - 10 -13 s -l stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.
基金supported by the National Natural Science Foundation of China(Grant Nos.41590623&41472040)the Fundamental Research Funds for the Central Universities+2 种基金China University of Geosciences(Grant No.CUGL150801)Special Fund from the State Key Laboratory of Geological Processes and Mineral ResourcesChina University of Geosciences(Grant No.MSFGPMR201408)
文摘Hydrous minerals are important water carriers in the crust and the mantle, especially in the subduction zone. With the recent development of the experimental technique, studies of the electrical conductivity of hydrous silicate minerals under controlled temperature, pressure and oxygen fugacity, have helped to constrain the water distribution in the Earth's interior. This paper introduces high pressure and temperature experimental study of electrical conductivity measurement of hydrous minerals such as serpentine, talc, brucite, phase A, super hydrous phase B and phase D, and assesses the data quality of the above minerals. The dehydration effect and the pressure effect on the bulk conductivity of the hydrous minerals are specifically emphasized. The conduction mechanism of hydrous minerals and the electrical structure of the subduction zone are discussed based on the available conductivity data. Finally, the potential research fields of the electrical conductivity of hydrous minerals is presented.
基金funded by ‘‘a group of four’’ Safety Science and Technology Project of State Production Safety Supervision Administration of China (No. 20130801)
文摘The research studied the influences of high temperature, high pressure, high humidity, noise and other harmful factors in mining conditions on the people health and safety, and investigated the impacts of confined environmental on human physiology factors, including temperature, humidity, noise, pressure,toxic and harmful gases in terms of environmental characteristics in underground mines and an artificial intelligence system for simulation of the environment in a confined space of deep mines. Our results show that the systolic pressure, diastolic pressure, mean pressure, heart rate, respiratory rate, typing test speed and memory level percentage are negatively correlated with temperature value, and positively correlated with humidity value; the human temperature and weight are positively correlated with temperature value, and negatively correlated with humidity value. This research lays the foundation for the study of interaction between the deep confined space environment and safety behavior.
文摘Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion.Speziale-Sarkar-Gatski(SSG) Reynolds stress model,Eddy-Dissipation Model(EDM),Discrete Ordinates Method(DTM) combined with Weighted-Sum-of-Grey Gases Model(WSGG) were employed for the numerical simulation.Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation.Temperature distribution,NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different.Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air.Furthermore,velocity fields,dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.
基金supported by funds from the National Key Research and Development Program of China (No.2016YFC0600204)the National Natural Science Foundation of China (Nos.41530211 and41872061)+1 种基金the National Key Basic Research Program of China (No.2015CB856101)the MOST Special Fund from the State Key Laboratory of GPMR (No.MSFGPMR02-2)
文摘A series of crystallization experiments have been carried out by using natural Emeishan Ti-rich hydrous basalts as starting materials at a pressure of 0.5 GPa and temperatures of 800-1000℃to constrain the origin of Fe-Ti-V oxide ore deposits.Our experimental results demonstrate that the sandwich-and trellis-type ilmenite lamellae in titanomagnetite of layered intrusions can be formed by the reaction of earlier crystallized ilmenite and the evolved parental magma.During evolution of parental basaltic magma,the Fe-Ti oxide should be composed of titanomagnetite+ilmenite in the earlier stage,but changed to titanomagnetite+titanomagnetite-ilmenite intergrowth±ilmenite at the later stage.Accordingly,the Panzhihua Fe-Ti oxide ores,which are mainly composed of titanomagnetite,should be formed earlier than the adjacent gabbro,in which titanomagnetite-ilmenite intergrowth is the major form of the Fe-Ti oxide.