期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanism of high temperature reduction on iron carbide preparation with low-grade siderite 被引量:1
1
作者 Dong Chen Ya-nan Lv +2 位作者 Wei Zhao Fei-bao Wu Wei-ang Ying 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2022年第9期1357-1367,共11页
The carburization roasting followed by magnetic separation is a feasible method to utilize low-grade siderite ore.In order to enhance the carburization efficiency and separation effciency,high temperature reduction wa... The carburization roasting followed by magnetic separation is a feasible method to utilize low-grade siderite ore.In order to enhance the carburization efficiency and separation effciency,high temperature reduction was carried out,and its mechanism was demonstrated by measuring carburization index,phase change,and microstructure under a carbon-sulfur infrared analyzer,an X-ray diffractometer,and a metallurgical microscope.The results show that both the carburization effciency of siderite pellet and the separation efficiency of iron carbide from gangue are very low.However,high temperature reduction is a useful way to enhance the carburization efficiency,as it can accelerate the reduction reaction rate and carburization reaction rate.Furthermore,high temperature reduction can improve the growth of iron carbide particle,promote the carburization efficiency,and strengthen the sodium modification reactions,thereby greatly accelerating the separation efficiency of iron carbide and gangue.When the siderite pellets were reduced at 1050℃ for 90 min and carburized at 650℃ for 120 min,the carburization index of carburized pellets reached 36.06.After magnetic separation treatment,an electric furnace burden assaying 83.12 wt.%Fe and 6.96 wt.%C was prepared,and the corresponding iron recovery rate was 95.43%.The high temperature reduction is promisingly adopted to promote the utilization of low-grade siderite ores using carburization-magnetic separation technology. 展开更多
关键词 SIDERITE high temperature reduction Carburization-Separation Iron carbide
原文传递
Preparation and properties of Ni-coated WC powder and highly impact resistant and corrosion resistant WC-Ni cemented carbides 被引量:5
2
作者 Fan-lu MIN Song-bai YU +4 位作者 Sheng WANG Zhan-hu YAO Jacques Guillaume NOUDEM Si-jin LIU Jian-feng ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期1935-1947,共13页
WC powders were uniformly coated by Ni nanoparticles through a combined chemical co-precipitation and subsequent high temperature hydrogen reduction strategy(abbreviated as CM-WCN),and then were consolidated by vacuum... WC powders were uniformly coated by Ni nanoparticles through a combined chemical co-precipitation and subsequent high temperature hydrogen reduction strategy(abbreviated as CM-WCN),and then were consolidated by vacuum sintering at 1450°C for 1 h to obtain WC−Ni cemented carbides.The microstructure and properties of the as-consolidated CM-WCN were investigated.The average grain size of WC in the consolidated CM-WCN was calculated to be in the range of 3.0−3.8μm and only few pores were observed.A relative density of 99.6%,hardness of HRA 86.5 and bending strength of 1860 MPa were obtained for the CM-WCN−10wt.%Ni,and the highest impact toughness of 6.17 J/cm^(2 )was obtained for the CM-WCN−12wt.%Ni,surpassing those of the hand mixed WC−Ni(HM-WCN)cemented carbides examined in this study and the other similar materials in the literature.CM-WCN cemented carbides possess excellent mechanical properties,due to their highly uniform structure and low porosity that could be ascribed to the intergranular-dominated fracture mode accompanied by a large number of plastic deformation tears of the bonding phase.In addition,the corrosion resistance of CM-WCN was superior to that of HM-WCN at the Ni content of 6−12 wt.%. 展开更多
关键词 WC−Ni cemented carbides chemical co-precipitation method high temperature hydrogen reduction strategy Ni content microstructure impact toughness corrosion resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部