期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Development of a High-Temperature Thixotropic Cement Slurry System
1
作者 Ping Lv Jiufei Liu +5 位作者 Mengran Xu Hui Tian Huajie Liu Yuhuan Bu Zhuang Cai Junfeng Qu 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2907-2921,共15页
Cementing carbonate reservoirs is generally a difficult task.The so-called thixotropic cement slurry has gained considerable attention in this regard as it can help tofix some notable problems.More precisely,it can ea... Cementing carbonate reservoirs is generally a difficult task.The so-called thixotropic cement slurry has gained considerable attention in this regard as it can help tofix some notable problems.More precisely,it can easilyfill the leakage layer;moreover,its gelling strength can grow rapidly when pumping stops,thereby increasing the resistance to gas channeling,effectively preventing this undesired phenomenon in many cases.High-temperature thixotropic cement slurry systems,however,are still in an early stage of development and additional research is needed to make them a viable option.In the present study,using a self-developed composite high-temperature thixotropic additive as a basis,it is shown that the compressive strength can be adjusted by tuning the proportion of silica sand,the high-temperature retarder,fluid loss additive and dispersant(compatible with the thixotropic additive).According to the tests,the developed high-temperature thixotropic cement slurry system has a 14 d compressive strength of 29.73 MPa at 150°C,and a thickening time of 330 min when the dosage of retarder is 2%.At the same time,the rheological property,water loss,permeability,water separation rate,and settlement stability of the cement slurry system meet the requirements of cementing construction. 展开更多
关键词 high temperature resistance THIXOTROPY cement slurry system
下载PDF
Experimental investigation of high temperature thermal contact resistance with interface material 被引量:3
2
作者 Xiaoping Zheng1,Donghuan Liu,2,3 Dong Wei,4 and Xinchun Shang 2,3 1) Applied Mechanics Laboratory,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 2) Department of Applied Mechanics,University of Science & Technology Beijing,Beijing 100083,China 3) National Center for Materials Service Safety,University of Science & Technology Beijing,Beijing 100083,China 4) China Aerodynamics Research and Development Center,Mianyang 621000,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期41-44,共4页
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a... Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance. 展开更多
关键词 thermal contact resistance interface material experimental research high temperature alloy C/C composite material
下载PDF
Screening of High Temperature Resistant Fodder Yeast Strains 被引量:1
3
作者 Yufeng LIU Yueming WANG +3 位作者 Qingli YANG Yanru JI Yan DONG Jie SHI 《Agricultural Biotechnology》 CAS 2015年第4期58-60,69,共4页
[ Objective] This study aimed to screen yeast strains suitable for high temperature processing of formulated biological feed. [ Method ] High temperature resistance and culture conditions of six yeast strains were inv... [ Objective] This study aimed to screen yeast strains suitable for high temperature processing of formulated biological feed. [ Method ] High temperature resistance and culture conditions of six yeast strains were investigated. [Result] Two yeast strains resistant to high temperature (45 ℃ ) with high viable cell number (10^8 cells/ml) were screened, including DQFC2117-1 and DQFC2122-2. [ Conclusion] Strains DQFC2117-1 and DQFC2122-2 could be used as high temperature resistant yeast strains for processing of formulated biological feed. 展开更多
关键词 high temperature resistance Fodder yeast Formulated feed Biological feed
下载PDF
Plugging property and displacement characters of a novel high-temperature resistant polymer nanoparticle
4
作者 Zhi-Yong Wang Mei-Qin Lin +3 位作者 Huai-Ke Li Zhao-Xia Dong Juan Zhang Zi-Hao Yang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期387-396,共10页
The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influen... The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influence on the plugging effect of the high-temperature swelled polymer nanoparticles,such as the core permeability,concentration of nanoparticles in the suspension,swelling time and swelling temperature,which makes it flexible to control the plugging effect by controlling displacement experiments conditions.Experimental results show that polymer nanoparticles dispersion system with a concentration of 500 mg/L is suitable for cores plugging with a permeability of 30×10^(-3)-150×10^(-3)μm^(2),even after aging at 150℃ for three months.The shunt flow experiments show that when the displacement factors are optimal values,the polymer nanoparticles after high temperature swelling to plug the high-permeability layer selectivity and almost do not clog the low-permeability layer.Oil recovery of homogeneous artificial core displacement experiment and a heterogeneous double-tube cores model are increased by 20%and 10.4%on the basis of water flooding.The polymer nanoparticles can be a great help for petroleum engineers to better apply this deep profile control and flooding technology. 展开更多
关键词 Polymer nanoparticles high temperature resistance Plugging property EOR
下载PDF
Laboratory Study on 210°C High Temperature and Salt Resistant Drilling Fluid
5
作者 Xintong Li Qichao Cao +2 位作者 Li He Shunyuan Zhang Song Wang 《Open Journal of Yangtze Oil and Gas》 2021年第3期83-97,共15页
Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resist... Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resistant drilling fluid system has been carried out, and lubricants, inhibitors and stabilizers have been optimized. The final drilling fluid formula is: water + 3% sepiolite + 0.3% Na<sub>2</sub>CO<sub>3</sub> + 3% RH-225 + 3% KCOOH + 3% G-SPH + 3% CQA-10 + 1.5% ZX-1 + Xinjiang barite, density 2.2 g/cm<sup>3</sup>, using hot-rolling furnace, environmental scanning electron microscope, high temperature and high pressure plugging instrument and Zeiss microscopes and other instruments use core immersion experiments, permeability recovery value experiments, and static stratification index methods to perform temperature resistance, reservoir protection, plugging performance, and static settlement stability performance of the configured drilling fluid., Inhibition performance, biological toxicity, salt resistance, anti-pollution performance have been tested, and it is concluded that the temperature resistance is good under the condition of 210°C, and the salt resistance can meet the requirements of 20% NaCl + 0.5% CaCl<sub>2</sub> concentration. It has a good reservoir protection effect, the permeability recovery value can reach more than 90%, the performance of restraining water dispersion and cuttings expansion is good, the heat roll recovery rate can reach more than 85%, and the SSSI value shows that its settlement stability performance is good;Its plugging performance is good under high temperature and high pressure. It laid the foundation for the next step to promote the field application of the drilling fluid system. 展开更多
关键词 Salt resistance high temperature resistance Drilling Fluid Performance Evaluation
下载PDF
Structures and Properties of High-Carbon High Speed Steel by RE-Mg-Ti Compound Modification
6
作者 符寒光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期48-51,共4页
The effects of rare earths(RE)-Mg-Ti compound modification on the structures and properties of high-carbon high speed steel(HSS) were researched.The impact toughness(α_k),the fracture toughness(K_(1c))and threshold o... The effects of rare earths(RE)-Mg-Ti compound modification on the structures and properties of high-carbon high speed steel(HSS) were researched.The impact toughness(α_k),the fracture toughness(K_(1c))and threshold of fatigue crack growth(ΔK_(th))are tested.The thermal fatigue test is done on a self-straining thermal fatigue tester,the wear test is done on a high temperature wear test machine.The results show that the matrix can be refined by the RE-Mg-Ti compound modification,the eutectic carbides are inclined to spheroidicize and are distributed evenly,the morphology and distribution of eutectic carbides are improved by appropriate RE-Mg-Ti complex modification.After RE-Mg-Ti compound modification,a little effects can be found on the strength,hardness and red hardness,but the fracture toughness(K_(1c)) and threshold of fatigue crack growth(△K_(th)) are improved in the meantime,the impact toughness (α_k) is increased by over one time,and the resistance to thermal fatigue and wear resistance at an elevated temperature are remarkably improved. 展开更多
关键词 high-carbon high speed steel RE-Mg-Ti compound modification thermal fatigue high temperature wear resistance
下载PDF
Design of TE_(01δ) Test Probe for Measuring the Microwave Surface Resistance of HTS Thin Film
7
作者 Cheng Zeng Zheng-Xiang Luo Qi-Shao Zhang Kai Yang 《Journal of Electronic Science and Technology of China》 2008年第2期212-215,共4页
A new TEo1δ test probe with proper transmission factor is fabricated for the measurement of surface resistance of high temperature superconductor (HTS) thin film. Coupling holes instead of coupling loops are used i... A new TEo1δ test probe with proper transmission factor is fabricated for the measurement of surface resistance of high temperature superconductor (HTS) thin film. Coupling holes instead of coupling loops are used in the probe for its easier machining and relatively low loss. Two 6 mm × 3 mm × 8 mm dielectric waveguides, one side of them is coated by silver, are used for coupling. The measurement result of S21 agrees well with the simulation because the size of the probe can be rigidly controlled by machine. The microwave surface resistance of four YBCO/MgO films are measured at 77 K and 12 GHz and scaled to 10 GHz according to thef2 rule. The average surface resistance of four HTS thin fdms is 0.38 mΩ, the standard deviation and relative standard deviation of one single HTS thin film are 0.009 mΩ and 2.4%, respectively. 展开更多
关键词 high temperature superconductor surface resistance surface resistance measurement.
下载PDF
新型缔合聚合物AP调剖体系研制及矿场应用(英文) 被引量:2
8
作者 赵化廷 赵普春 +1 位作者 陈洪 张三辉 《Petroleum Science》 SCIE CAS CSCD 2004年第4期47-56,共10页
A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional ... A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional polymers (such as polyacrylamide) used in profile control, profile performance improvement and EOR operations in the Zhongyuan Oilfield, Sinopec. This system has been developed on the basis of the specific molecular structure and the better properties of high temperature resistance, high salinity resistance and strong shearing resistance of the new type of AP-P4 association polymer. Acidity modifying agents and cross-linking agents (MZ-YL, MZ-BE, MZ-XS), compatible with the new polymer system, are selected. Results of performance tests have shown that the new polymer system has excellent thickening, high temperature, high salinity and shearing resistance and anti-dehydrating properties. In 2003, it underwent its first pilot test in 26 wells in China, with remarkable effects in increasing oil production and decreasing water production. The newly developed polymer system and its application technology described in this paper may play a guiding role in polymer profile control operations in the oil reservoirs of high temperature and high salinity. 展开更多
关键词 association polymer profile control high temperature resistance high salinity resistance strong shearing resistance
下载PDF
3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation 被引量:4
9
作者 Zhipeng Jin Hui Mei +4 位作者 Yuekai Yan Longkai Pan Hongxia Liu Shanshan Xiao Laifei Cheng 《Journal of Materiomics》 SCIE EI 2021年第1期8-18,共11页
Superwetting surfaces have the potential to address oil pollution in water,through their ability to separate the two.However,it remains a great challenge to fabricate stable and efficient separation structures using c... Superwetting surfaces have the potential to address oil pollution in water,through their ability to separate the two.However,it remains a great challenge to fabricate stable and efficient separation structures using conventional manufacturing techniques.Furthermore,the materials traditionally used for oil-water separation are not stable at high temperature.Therefore,there is a need to develop stable,customizable structures to improve the performance of oil-water separation devices.In recent years,3D printing technology has developed rapidly,and breakthroughs have been made in the fabrication of complicated ceramic structures using this technology.Here,a ceramic material with a gradient pore structure and superhydrophobic/superoleophilic properties was prepared using 3D printing for high-efficiency oil-water separation.The gradient pore structure developed here can support a flux of up to 25434 L/m^(2)h,which is nearly 40%higher than that an analogous structure with straight pores.At 200℃,the oil-water separation performance was maintained at 97.4%.Furthermore,samples of the material exhibited outstanding mechanical properties,and chemical stability in a variety of harsh environments.This study provides an efficient,simple,and reliable method for manufacturing oil-water separation materials using 3D printing,and may have broader implications for both fundamental research and industrial applications. 展开更多
关键词 3D printing Gradient pore structure high temperature resistance Surface functionalization Oil/water separation
原文传递
Excellent electromagnetic wave absorption of MOF/SiBCN nanomaterials at high temperature 被引量:2
10
作者 Chunjia LUO Peng MIAO +1 位作者 Yusheng TANG Jie KONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第11期277-291,共15页
Electromagnetic wave absorbing materials at high-temperature are urgently needed for stealth aircrafts or aero-engines worked in harsh environments.In this contribution,cobaltcontaining siliconboron carbonitride(MOF/S... Electromagnetic wave absorbing materials at high-temperature are urgently needed for stealth aircrafts or aero-engines worked in harsh environments.In this contribution,cobaltcontaining siliconboron carbonitride(MOF/SiBCN)nanomaterials were prepared by pyrolyzing metal–organic framework,i.e.cobalt 2-methylimidazole(ZIF-67),and hyperbranched polyborosilazane.The rhombic dodecahedral ZIF-67 and cobalt element promoted in situ formation of dielectric loss phases,including SiC nanocrystals,CoSi nanocrystals and turbostratic carbons.The ZIF-67/SiBCN nanomaterials showed excellent microwave absorption both at room and elevated temperature.The minimum reflection coefficient(RC_(min))was-51.6dB and effective absorption bandwidth(EAB)is 3.93GHz at room temperature.At an elevated temperature of 600℃,the RC_(min) reached-30.29 dB and EAB covered almost the whole X-band(3.95GHz,8.45–12.4GHz).The ZIF-67/SiBCN nanocomposites are promising and useful platform for microwave absorbing materials at high-temperature.It may shed light on the downstream applications in designing next generation areo-engines and stealth aircrafts. 展开更多
关键词 Electromagnetic wave absorption high temperature resistance Metal-organic framework Polymer-derived ceramics Siliconboron carbonitride
原文传递
Zirconia Hollow Spheres and Their Application
11
作者 GAO Qianyu WU Aijun +1 位作者 WANG Qi YIN Hongji 《China's Refractories》 CAS 2018年第4期26-30,共5页
Zirconia hollow sphere products are ultra-high temperature energy saving lightweight insulating refractories in zirconia system.They not only have the same refractoriness as zirconia products,but also have the advanta... Zirconia hollow sphere products are ultra-high temperature energy saving lightweight insulating refractories in zirconia system.They not only have the same refractoriness as zirconia products,but also have the advantages of low bulk density and excellent thermal insulation properties.Their thermal conductivity is 0.3-0.4 W · m-1 · K-1 only 1/2 of that of the ordinary zirconia products.They are special refractories which can be used steadily up to 2 400 ℃ in oxidation,reduction and vacuum atmospheres.Zirconia hollow sphere products are the best lining refractories for various ultra-high temperature kilns and furnaces of tungsten and molybdenum metal products processing,artificial crystals,and quartz industrial production. 展开更多
关键词 zirconia hollow sphere high temperature resistance thermal insulation APPLICATION
下载PDF
Study on a Polyamine-Based Anti-Collapse Drilling Fluid System
12
作者 Wenwu Zheng Fu Liu +5 位作者 Jing Han Binbin He Shunyuan Zhang Qichao Cao Xiong Wang Xintong Li 《Open Journal of Yangtze Oil and Gas》 CAS 2022年第3期203-212,共10页
In complex strata, oil-based drilling fluid is the preferred drilling fluid system, but its preparation cost is high, and there are hidden safety risks. Therefore, the new progress of high-performance anti-collapse wa... In complex strata, oil-based drilling fluid is the preferred drilling fluid system, but its preparation cost is high, and there are hidden safety risks. Therefore, the new progress of high-performance anti-collapse water-based drilling fluid at home and abroad is analyzed. It is difficult to prevent and control the well collapse. Once the well wall instability problem occurs, it will often bring huge economic losses to the enterprises, and the underground safety accidents will occur. In order to ensure the stability of the well wall and improve the downhole safety, the key treatment agent of water-based collapse drilling fluid is selected, the anti-collapse drilling fluid system is formulated, the evaluation method of drilling fluid prevention performance is established, and a set of water-based drilling fluid system suitable for easy to collapse strata in China is selected to ensure the downhole safety. The development trend of high performance anti-collapse water-based drilling fluid is expected to provide a reference for the research of high performance anti-collapse water-based drilling fluid system and key treatment agent. 展开更多
关键词 Well Wall Stability Anti-Collapse Water-Based Drilling Fluid Evaluation Method high temperature resistance Salt resistance
下载PDF
Development and application of a new hot-work die steel for hot stamping 被引量:6
13
作者 GUAN Hong LUO Aihui 《Baosteel Technical Research》 CAS 2017年第2期11-17,共7页
A new hot-work die steel for hot stamping was developed, and used the die for mass production. The produced die showed good performance owing to its high heat conductivity and wear-resistant characteristics. Two diffe... A new hot-work die steel for hot stamping was developed, and used the die for mass production. The produced die showed good performance owing to its high heat conductivity and wear-resistant characteristics. Two different benchmarking hot-work die steels were investigated, and then compared in terms of their impact ductility, temper characteristics ,heat conductivity, and thermal stability. The result of the high-temperature friction wear test indicated that oxidative wear was the main mode in high temperature. On the basis of the comparison and test results, the alloying composition of the new hot-work die steel was especially designed. The new die steel showed good performance with good wear-resistant quality, as well as temper hardness and heat conductivity of HRC 50 and 34.3 W/( m ~ K), respectively. Furthermore, without surface plasma nitriding, the die made of the new steel had no obvious galling with 6 142 strokes. After surface plasma nitriding, the die completed 40 000 strokes with good surface. The die life is expected to exceed 200 000 strokes. 展开更多
关键词 hot-work steel temper resistance thermal conductivity high temperature wear resistance plasma nitriding
下载PDF
High Temperature Deformation Behavior of Fe-9Ni-C Alloy 被引量:4
14
作者 ZHANG Kun WU Hui-bin TANG Di 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2012年第5期58-62,共5页
The high temperature deformation behavior of the 9Ni steel has been studied by the Gleeble-3500 tester. The relationship between deformation resistance and deformation degree, deformation temperature and deformation r... The high temperature deformation behavior of the 9Ni steel has been studied by the Gleeble-3500 tester. The relationship between deformation resistance and deformation degree, deformation temperature and deformation rate was revealed. The results show that when the deformation degree is less than 0.2, the deformation resistance increases by about 70 to 200 MPa, while the deformation degree varied between 0.2 and 0.4, the deformation resist- ance increases by about 30--40 MPa, when the deformation degree is larger than 0.4, the deformation resistance in- creases slowly, some become stable gradually. The influence of deformation temperature on deformation resistance is larger, and deformation resistance at higher temperature is about 160 MPa smaller than at lower temperature. Higher deformation rate leads to larger deformation resistance. The deformation resistance increases about 70 to 110 MPa with the increase of the deformation rate. A new and highly accurate mathematical model of the steel was established to describe the deformation behavior during rolling. 展开更多
关键词 9Ni steel high temperature deformation resistance mathematical model
原文传递
Hyperelastic Graphene Aerogels Reinforced by In‑suit Welding Polyimide Nano Fiber with Leaf Skeleton Structure and Adjustable Thermal Conductivity for Morphology and Temperature Sensing 被引量:1
15
作者 Weida Yin Mengmeng Qin +2 位作者 Huitao Yu Jinxu Sun Wei Feng 《Advanced Fiber Materials》 SCIE EI 2023年第3期1037-1049,共13页
Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due t... Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due to inadequate chemical con-nections.In addition,the heat-transfer performance of existing compression strain sensors under stress is unclear and lacks research,making it difficult to perform real-temperature detections.To address these issues,a hyperelastic polyimide fiber/graphene aerogel(PINF/GA)with a three-dimensional interconnected structure was fabricated by simple one-pot compound-ing and in-situ welding methods.The welding of fiber lap joints promotes in-suit formation of three-dimensional crosslinked networks of polyimide fibers,which can effectively avoid slidings between fibers to form reinforced ribs,preventing graphene from damage during compression.In particular,the inner core of the fiber maintains its macromolecular chain structure and toughness during welding.Thus,PINF/GA has good structural stabilities under a large strain compression(99%).Moreover,the thermal and electrical conductivities of PINF/GA could not only change with various stresses and strains but also keep the change steady at specific stresses and strains,with its thermal-conductivity change ratio reaching up to 9.8.Hyperelastic PINF/GA,with dynamically stable thermal and electrical conductivity,as well as high heat tolerance,shows broad applica-tion prospects as sensors in detecting the shapes and temperatures of unknown objects in extreme environments. 展开更多
关键词 Graphene aerogel Fiber welding highly compressible high and low temperature resistance Cyclic stability Flexible tactile sensor
原文传递
Comparison of microstructure and property of high chromium bearing steel with and without nitrogen addition 被引量:6
16
作者 Hai-feng Xu Feng Yu +3 位作者 Chang Wang Wan-li Zhang Jian Li Wen-quan Cao 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第2期206-213,共8页
Microstructure and property of bearing steel with and without nitrogen addition were investigated by microstructural observation and hardness measurement after different heat treatment processing. Based on the microst... Microstructure and property of bearing steel with and without nitrogen addition were investigated by microstructural observation and hardness measurement after different heat treatment processing. Based on the microstructural observation of both 9Cr18 steel and X90N steel, it was found that nitrogen addition could effectively reduce the amount and size of coarse carbides and also refine the original austenite grain size. Due to addition of nitrogen, more austenite phase was found in X90N steel than in 9Cr18 steel. The retained austenite of X90N steel after quenching at 1050℃ could be reduced from about 60% to about 7 9% by cold treatment at -73℃ and subsequent tempering, and thus finally increased the hardness up to 60 HRC after low temperature tempering and to 63 HRC after high temperature tempering. Furthermore, both the wear and corrosion resistance of X90N steel were found much more superior than those of 9Cr18 steel, which was attributed to the addition of nitrogen. It was proposed at last that nitrogen alloying into the high chromium bearing steel was a promising way not only to refine the size of both carbides and austenite, but also to achieve high hardness, high wear property and improved corrosion resistance of the stainless bearing steel. 展开更多
关键词 Nitrogen addition high temperature tempering high hardness Austenite grain size Carbide Wear resistance high chromium bearing steel
原文传递
Fabrication of high-stability Ni-PSF@PAO40 microcapsules and their lubricating properties in polyamide 6
17
作者 Wenli ZHANG Xiaowen QI +3 位作者 Xiao YANG Yu DONG Bingli FAN Lei LIANG 《Friction》 SCIE EI CAS CSCD 2022年第12期1985-1999,共15页
Novel Ni-PSF@PAO40 microcapsules(NPPMS)with high stability were prepared by using a combined processing method of electroless nickel plating and solvent volatilization.The results indicate that Ni is completely assemb... Novel Ni-PSF@PAO40 microcapsules(NPPMS)with high stability were prepared by using a combined processing method of electroless nickel plating and solvent volatilization.The results indicate that Ni is completely assembled on the surfaces of PSF/PAO40 microcapsules with the encapsulation capacity of NPPMS achieved at 50%.Organic solvents immersion shows that NPPMS have an excellent chemical stability.Macro thermal stability tests reveal that the softening temperature of NPPMS is increased up to over 400℃ while it becomes lower than 200℃ for PSF/PAO40 microcapsules.Furthermore,NPPMS were embedded into polyamide 6(PA6)to prepare PA6/NPPMS composites.The cross-sectional morphology shows that NPPMS are intact in PA6 matrices.The microhardness of PA6 is effectively improved with the incorporation of NPPMS.As compared with neat PA6,the coefficient of friction(COF)for PA6/NPPMS composites with 10%NPPMS could be reduced by 87.7%(from 0.49 to 0.06)and the wear rate could be decreased by 96.8%(from 1.29×10^(-5) to 4.15×10^(-7) mm^(3)/(N·m)).Further studies confirmed that increasing test loads and test temperatures was beneficial to improve the lubrication performance of NPPMS despite the opposite trend occurred when increasing the sliding speeds.It has been demonstrated that synergistic effects between PAO40 and Ni layer play an important role in improving the tribological properties of PA6.Therefore,NPPMS significantly improve the ability of microcapsules to resist a harsh environment,which has important scientific significance for expanding the use of microcapsules more practically in self-lubricating composites. 展开更多
关键词 MICROCAPSULES electroless nickel high temperature resistant polyamide 6(PA6) friction and wear
原文传递
Oxidation behavior of TiAlZrCr/(Ti,Al,Zr,Cr)N gradient films deposited by multi-arc ion plating
18
作者 Shilu ZHAO Jun ZHANG Changsheng LIU 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2010年第6期473-480,共8页
The two Ti-Al-Zr targets and one pure Cr target were used to prepare the TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films on high speed steel (WlSCr4V) substrates by multi-arc ion plating technique. Short-term isothermal... The two Ti-Al-Zr targets and one pure Cr target were used to prepare the TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films on high speed steel (WlSCr4V) substrates by multi-arc ion plating technique. Short-term isothermal (at 600 ℃, 700 ℃, 800℃ and 900 ℃ for 4 h) and long-terra cyclic (at 700℃ and 800℃ for 100 h) high temperature oxidation behavior of the gradient films were studied. Then the oxide scales formed on the film specimens were characterized by scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy (EDS) and X-ray diffraction (XRD). It was showed that, under short-term isothermal condition, the high temperature oxidation resistance of the gradient film was excellent up to 800 ℃ and an oxide scale comprising TiO2 was observed. On the other hand, under long-term cyclic high temDerature condition, the oxidation resistance of the gradient film was excellent at about 700 ℃. 展开更多
关键词 Multi-arc ion plating TiAlZrCr/(Ti Al Zr Cr)N gradient film high speed steel high temperature oxidation resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部