This paper reviews high temperature sensing applications based on fiber Bragg gratings fabricated by use of femtosecond laser. Type II fiber Bragg gratings fabricated in the silica fiber can sustain up to 1200 ℃ whil...This paper reviews high temperature sensing applications based on fiber Bragg gratings fabricated by use of femtosecond laser. Type II fiber Bragg gratings fabricated in the silica fiber can sustain up to 1200 ℃ while that fabricated in the sapphire fiber have the good thermal stability up to 1745 ℃.展开更多
Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of t...Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC) structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film-substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.展开更多
A Mach-Zehnder interferometer(MZI)for high temperature(1000°C)sensing based on few mode fiber(FMF)was proposed and experimentally demonstrated.The sensor was fabricated by fusing a section of FMF between two sing...A Mach-Zehnder interferometer(MZI)for high temperature(1000°C)sensing based on few mode fiber(FMF)was proposed and experimentally demonstrated.The sensor was fabricated by fusing a section of FMF between two single-mode fibers(SMFs).The structure was proven to be an excellent high temperature sensor with good stability,repeatability,and high temperature sensitivity(48.2 pm/C)after annealing process at a high temperature lasting some hours,and a wide working temperature range(from room temperature to 1000 C).In addition,the simple fabrication process and the low cost offered a great potential for sensing in high temperature environments.展开更多
Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasi...Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasing presents an optical signal-to-noise ratio of 50 dB and temperature sensitivity coefficient of 15.36 pm∕℃ for the heating process and 15.46 pm∕℃ for the cooling process. The lasing wavelength variation and power fluctuation at 700℃ are less than 0.02 nm and 0.21 dB, respectively. The RFBG-based fiber laser sensing has displayed good linearity for both the temperature rising and cooling processes, and favorable stability at high temperatures.展开更多
Advanced sensing techniques are in big demand for applications in hypersonic wind tunnel harsh environments,such as aero(thermo)dynamics measurements,thermal protection of aircraft structures,air-breathing propulsion,...Advanced sensing techniques are in big demand for applications in hypersonic wind tunnel harsh environments,such as aero(thermo)dynamics measurements,thermal protection of aircraft structures,air-breathing propulsion,light-weighted and highstrength materials,etc.In comparison with traditional electromechanical or electronic sensors,the fiber optic sensors have relatively high potential to work in hypersonic wind tunnel,due to the capability of responding to a wide variety of parameters,high resolution,miniature size,high resistant to electromagnetic and radio frequency interferences,and multiplexing,and so on.This article has classified and summarized the research status and the representative achievement on the fiber optic sensing technologies,giving special attention to the summary of research status on the popular Fabry-Perot interferometric,fiber Bragg gratings and(quasi)distributed fiber optic sensors working in hypersonic wind tunnel environment,and discussed the current problems in special optical fiber sensing technologies.This article would be regarded as reference for the researchers in hypersonic wind tunnel experiment field.展开更多
文摘This paper reviews high temperature sensing applications based on fiber Bragg gratings fabricated by use of femtosecond laser. Type II fiber Bragg gratings fabricated in the silica fiber can sustain up to 1200 ℃ while that fabricated in the sapphire fiber have the good thermal stability up to 1745 ℃.
基金financial support from the National Natural Science Foundation of China(11672153,11232008,and11227801)
文摘Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC) structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film-substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.
基金This work was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.41266001,61665007,and 61865013)National Key Research and Development Project from the Ministry of Science and Technology(Grant No.2018YFE0115700)+1 种基金Science and Technology Project of Jiangxi Education Department(Grant No.GJJ180518)Nanchang Hangkong University graduate student innovation special fund project(Grant No.YC2019053).
文摘A Mach-Zehnder interferometer(MZI)for high temperature(1000°C)sensing based on few mode fiber(FMF)was proposed and experimentally demonstrated.The sensor was fabricated by fusing a section of FMF between two single-mode fibers(SMFs).The structure was proven to be an excellent high temperature sensor with good stability,repeatability,and high temperature sensitivity(48.2 pm/C)after annealing process at a high temperature lasting some hours,and a wide working temperature range(from room temperature to 1000 C).In addition,the simple fabrication process and the low cost offered a great potential for sensing in high temperature environments.
基金supported by the Beijing Outstanding Talent Training Funded Project(No.2015000020124G074)the 111 Project(No.D17021)the Changjiang Scholars and Innovative Research Team in University(No.IRT_16R07)
文摘Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasing presents an optical signal-to-noise ratio of 50 dB and temperature sensitivity coefficient of 15.36 pm∕℃ for the heating process and 15.46 pm∕℃ for the cooling process. The lasing wavelength variation and power fluctuation at 700℃ are less than 0.02 nm and 0.21 dB, respectively. The RFBG-based fiber laser sensing has displayed good linearity for both the temperature rising and cooling processes, and favorable stability at high temperatures.
基金the National Natural Science Foundation of China(NSFC)(Project Nr.:2012YQ25002,11802329).
文摘Advanced sensing techniques are in big demand for applications in hypersonic wind tunnel harsh environments,such as aero(thermo)dynamics measurements,thermal protection of aircraft structures,air-breathing propulsion,light-weighted and highstrength materials,etc.In comparison with traditional electromechanical or electronic sensors,the fiber optic sensors have relatively high potential to work in hypersonic wind tunnel,due to the capability of responding to a wide variety of parameters,high resolution,miniature size,high resistant to electromagnetic and radio frequency interferences,and multiplexing,and so on.This article has classified and summarized the research status and the representative achievement on the fiber optic sensing technologies,giving special attention to the summary of research status on the popular Fabry-Perot interferometric,fiber Bragg gratings and(quasi)distributed fiber optic sensors working in hypersonic wind tunnel environment,and discussed the current problems in special optical fiber sensing technologies.This article would be regarded as reference for the researchers in hypersonic wind tunnel experiment field.