High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized b...High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ^(2)0 nm and high dispersibility,which is comparable with or even better than some other chemical methods.Benefitting from their high reactivity,dense YSZ electrolytes(relative density of 97.9%) can be obtained at a relatively low sintering temperature of 1400℃.The optimized electrical conductivity reaches up to a high value of0.034 S/cm at 800 0C in air.The anode supported single cell with the construction of Ni-YSZ/YSZ/Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)/La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF) exhibits the peak power density of 0.827 W/cm^(2) at800℃ while taking wet H_(2) as fuels and ambient air as oxidants.展开更多
In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as...In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as-prepared samples was analyzed by X-ray diffraction(XRD),XRD Rietveld refinement and Fourier transform infrared(FT-IR) spectroscopy.The as-prepared samples retain the orthorhombic structure with space group of Pbcn even Er^(3+) doping concentration up to 15 at%.High-purity upconversion(UC) green emission with green to red intensity ratio of 55 is observed from the as-prepared samples upon the excitation of 980 nm semiconductor laser and the optimum doping concentration of Er^(3+) ions in the self-activated KYb(MoO_(4))_(2) host is revealed as 3 at%.The strong green UC emission is confirmed as a two-photon process based on the power-dependent UC spectra.In addition,the fluorescence intensity ratios(FIRs) of the two thermally-coupled energy levels,namely ^(2)H_(11/2) and ^(4)S_(3/2).of Er^(3+) ions were investigated in the temperature region 300-570 K to evaluate the optical temperature sensor behavior of the sample.The maximum relative sensitivity(S_(R)) is determined to be 0.0069 K^(-1) at300 K and the absolute sensitivity(S_(A)) is determined to be 0.0126 K^(-1) at 300 K.The S_(A) of self-activated KYb(MoO_(4))2:Er^(3+)is almost twice that of traditional KY(MoO_(4))2:Er^(3+)/Yb^(3+)codoping phosphor.The results demonstrate that Er^(3+) ions doped self-activated KYb(MoO_(4))2 phosphor has promising application in visible display,trademark security and optical temperature sensors.展开更多
采用热化学反应喷涂法在304不锈钢基体表面制备了Al_2O_3非梯度陶瓷涂层(记为1~#涂层)和Ni Cr Al Y/Al_2O_3梯度陶瓷涂层(记为2~#涂层),使用扫描电镜(SEM)、X射线衍射仪(XRD)对该涂层的微观形貌、物相变化进行表征;描述了涂层的高温氧...采用热化学反应喷涂法在304不锈钢基体表面制备了Al_2O_3非梯度陶瓷涂层(记为1~#涂层)和Ni Cr Al Y/Al_2O_3梯度陶瓷涂层(记为2~#涂层),使用扫描电镜(SEM)、X射线衍射仪(XRD)对该涂层的微观形貌、物相变化进行表征;描述了涂层的高温氧化动力学曲线,对涂层的热震性能进行分析。结果表明,喷涂Al_2O_3陶瓷料浆能有效填补Ni Cr Al Y喷涂层产生的裂纹,涂层与金属基体之间呈冶金结合,α-Al_2O_3和金红石型Ti O_2是陶瓷涂层耐高温的主体晶相结构。2~#涂层表现出最佳的抗高温氧化性能和抗热震性能。展开更多
基金supported by the Natural Science Foundation of Shandong Province (ZR2020KE033,ZR2020ME051,ZR2019BEM013,ZR2021ME253)the Shandong Science and Technology Program (2021TSGC1122)+1 种基金the Shandong Postdoctoral Innovation Foundation (201903069)the Zibo Key Research and Development Project (2021SNPT0004,2021SNCG0076)。
文摘High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ^(2)0 nm and high dispersibility,which is comparable with or even better than some other chemical methods.Benefitting from their high reactivity,dense YSZ electrolytes(relative density of 97.9%) can be obtained at a relatively low sintering temperature of 1400℃.The optimized electrical conductivity reaches up to a high value of0.034 S/cm at 800 0C in air.The anode supported single cell with the construction of Ni-YSZ/YSZ/Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)/La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF) exhibits the peak power density of 0.827 W/cm^(2) at800℃ while taking wet H_(2) as fuels and ambient air as oxidants.
基金supported by the National Natural Science Foundation of China (52202001)Open Project of Advanced Laser Technology Laboratory of Anhui Province (AHL2021KF07)+1 种基金Major Science and Technology of Anhui Province(202203a05020002)University Natural Science Research Project of Anhui Province (KJ2021A0388)。
文摘In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as-prepared samples was analyzed by X-ray diffraction(XRD),XRD Rietveld refinement and Fourier transform infrared(FT-IR) spectroscopy.The as-prepared samples retain the orthorhombic structure with space group of Pbcn even Er^(3+) doping concentration up to 15 at%.High-purity upconversion(UC) green emission with green to red intensity ratio of 55 is observed from the as-prepared samples upon the excitation of 980 nm semiconductor laser and the optimum doping concentration of Er^(3+) ions in the self-activated KYb(MoO_(4))_(2) host is revealed as 3 at%.The strong green UC emission is confirmed as a two-photon process based on the power-dependent UC spectra.In addition,the fluorescence intensity ratios(FIRs) of the two thermally-coupled energy levels,namely ^(2)H_(11/2) and ^(4)S_(3/2).of Er^(3+) ions were investigated in the temperature region 300-570 K to evaluate the optical temperature sensor behavior of the sample.The maximum relative sensitivity(S_(R)) is determined to be 0.0069 K^(-1) at300 K and the absolute sensitivity(S_(A)) is determined to be 0.0126 K^(-1) at 300 K.The S_(A) of self-activated KYb(MoO_(4))2:Er^(3+)is almost twice that of traditional KY(MoO_(4))2:Er^(3+)/Yb^(3+)codoping phosphor.The results demonstrate that Er^(3+) ions doped self-activated KYb(MoO_(4))2 phosphor has promising application in visible display,trademark security and optical temperature sensors.
文摘采用热化学反应喷涂法在304不锈钢基体表面制备了Al_2O_3非梯度陶瓷涂层(记为1~#涂层)和Ni Cr Al Y/Al_2O_3梯度陶瓷涂层(记为2~#涂层),使用扫描电镜(SEM)、X射线衍射仪(XRD)对该涂层的微观形貌、物相变化进行表征;描述了涂层的高温氧化动力学曲线,对涂层的热震性能进行分析。结果表明,喷涂Al_2O_3陶瓷料浆能有效填补Ni Cr Al Y喷涂层产生的裂纹,涂层与金属基体之间呈冶金结合,α-Al_2O_3和金红石型Ti O_2是陶瓷涂层耐高温的主体晶相结构。2~#涂层表现出最佳的抗高温氧化性能和抗热震性能。