A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quali...A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quality,were investigated,and the concept of green degree was applied in the production of synthetic rutile.An analytic hierarchy process was utilized to assess matrix of greenness evaluation.The Gauss-Seidel iterative matrix method was employed to solve the assessment matrix and obtain the weights and membership functions of all evaluation indexes.A fuzzy decision-making method was applied to build the greenness evaluation model,and then the scores of green degree in microwave-assisted leaching process was obtained.The greenness evaluation model was applied to the life cycle assessment of the microwave-assisted leaching process.The results show that the microwave-assisted leaching process has advantages over the conventional ones,with respect to energy-consumption,processing time and environmental protection.展开更多
Microwave absorbing properties of high titanium slag were investigated by using microwave cavity perturbation technique. High titanium slag containing more than 90% TiO2 was prepared by carbothermal reduction of ilmen...Microwave absorbing properties of high titanium slag were investigated by using microwave cavity perturbation technique. High titanium slag containing more than 90% TiO2 was prepared by carbothermal reduction of ilmenite. The temperature rise curve of high titanium slag in microwave heating process was obtained. Crystalline compounds of high titanium slag before and after microwave irradiation were obtained and characterized by X-ray diffractometry (XRD). Effects of particle size of high titanium slag anal mixtures of high titanium slag with different mass fractions of V2o5 on microwave absorbing properties were investigated systematically. The results show that high titanium slag has good microwave absorption property; untreated high titanium slag mainly consists of crystalline compounds of anatase and iron titanium oxide, while the microwave-irradiation treated one is mainly composed of crystalline compounds of rutile and irgn titanium oxide. Synthetic anatase is transformed completely into rutile at about 1 050 ℃ for 20 min under microwave irradiation. High frequency shift and low amplitude of voltage make high titanium slag an ideal microwave absorbent. 180 μm of particle size and 10% mass fraction of V2O5 are found to be the optimum conditions for microwave absorption.展开更多
In order to achieve high-efficiency alkali conversion and impurity removal of high titanium slag under the condition of low alkali concentration,a new way of oxygen-rich alkali conversion in KOH solution was proposed....In order to achieve high-efficiency alkali conversion and impurity removal of high titanium slag under the condition of low alkali concentration,a new way of oxygen-rich alkali conversion in KOH solution was proposed.The conversion law of element occurrence state and the influence of the conversion conditions on the titanium conversion rate and removal rate of silicon and aluminum were studied.The results showed that the KOH solution converted the titanium oxide in high titanium slag into whisker-like potassium titanate.Silicon and aluminum elements were dissolved into the solution.Under the following conditions,KOH concentration of 6 mol/L,conversion temperature of 260℃,initial oxygen partial pressure of 2 MPa,liquid−solid ratio of 35 mL/g,conversion time of 4 h,and high titanium slag particle size of 48−74μm,the conversion rate of titanium was 97.0%,and the removal rates of silicon and aluminum were 90.2%and 76.2%,respectively.Oxygen-rich alkali conversion product was converted to rutile with a TiO_(2) grade of 99.1%by acid hydrolysis conversion.展开更多
By means of energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) analysis, the phase structure characteristics of high titanium slag were analyzed. Through the single factor and the orthog...By means of energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) analysis, the phase structure characteristics of high titanium slag were analyzed. Through the single factor and the orthogonal experiment methods, the effects of material particle size, mass ratio of acid to ore, roasting temperature, and roasting time on the acidolysis ratio of TiO<sub>2</sub> during the process of roasting high titanium slag with concentrated sulfuric acid were systematically investigated. The results show that the sequence of each factor affecting the acidolysis ratio of TiO<sub>2</sub> is: mass ratio of acid to ore, roasting time, and roasting temperature. The optimum technological conditions are obtained as mass ratio of acid to ore of 2.1, roasting temperature of 310°C, roasting time of 75min, and material particle size of 45–53μm. The acidolysis ratio of TiO<sub>2</sub> is over 96% under the optimum conditions. The roasting process is proved to be significant in the exploitation and utilization of high titanium slag. The advantages of the proposed roasting process are of high efficiency, low power consumption, and minimum pollution.展开更多
基金Project(2007CB613606)supported by the National Basic Research Program of ChinaProjects(50734007,50974067)supported by the National Natural Science Foundation of China
文摘A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quality,were investigated,and the concept of green degree was applied in the production of synthetic rutile.An analytic hierarchy process was utilized to assess matrix of greenness evaluation.The Gauss-Seidel iterative matrix method was employed to solve the assessment matrix and obtain the weights and membership functions of all evaluation indexes.A fuzzy decision-making method was applied to build the greenness evaluation model,and then the scores of green degree in microwave-assisted leaching process was obtained.The greenness evaluation model was applied to the life cycle assessment of the microwave-assisted leaching process.The results show that the microwave-assisted leaching process has advantages over the conventional ones,with respect to energy-consumption,processing time and environmental protection.
基金Project(2007CB613606) supported by the Major State Basic Research and Development Program of ChinaProject(50734007) supported by the National Natural Science Foundation of China
文摘Microwave absorbing properties of high titanium slag were investigated by using microwave cavity perturbation technique. High titanium slag containing more than 90% TiO2 was prepared by carbothermal reduction of ilmenite. The temperature rise curve of high titanium slag in microwave heating process was obtained. Crystalline compounds of high titanium slag before and after microwave irradiation were obtained and characterized by X-ray diffractometry (XRD). Effects of particle size of high titanium slag anal mixtures of high titanium slag with different mass fractions of V2o5 on microwave absorbing properties were investigated systematically. The results show that high titanium slag has good microwave absorption property; untreated high titanium slag mainly consists of crystalline compounds of anatase and iron titanium oxide, while the microwave-irradiation treated one is mainly composed of crystalline compounds of rutile and irgn titanium oxide. Synthetic anatase is transformed completely into rutile at about 1 050 ℃ for 20 min under microwave irradiation. High frequency shift and low amplitude of voltage make high titanium slag an ideal microwave absorbent. 180 μm of particle size and 10% mass fraction of V2O5 are found to be the optimum conditions for microwave absorption.
基金supported by the National Natural Science Foundation of China(Nos.U1908225,U1702253)Fundamental Research Funds for the Central Universities of China(Nos.N182515007,N170908001,N2025004)。
文摘In order to achieve high-efficiency alkali conversion and impurity removal of high titanium slag under the condition of low alkali concentration,a new way of oxygen-rich alkali conversion in KOH solution was proposed.The conversion law of element occurrence state and the influence of the conversion conditions on the titanium conversion rate and removal rate of silicon and aluminum were studied.The results showed that the KOH solution converted the titanium oxide in high titanium slag into whisker-like potassium titanate.Silicon and aluminum elements were dissolved into the solution.Under the following conditions,KOH concentration of 6 mol/L,conversion temperature of 260℃,initial oxygen partial pressure of 2 MPa,liquid−solid ratio of 35 mL/g,conversion time of 4 h,and high titanium slag particle size of 48−74μm,the conversion rate of titanium was 97.0%,and the removal rates of silicon and aluminum were 90.2%and 76.2%,respectively.Oxygen-rich alkali conversion product was converted to rutile with a TiO_(2) grade of 99.1%by acid hydrolysis conversion.
基金financially supported by the National Natural Science Foundation of China(Nos.61372195 and61304069)the National Basic Research Program of China(No.2007CB613603)
文摘By means of energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) analysis, the phase structure characteristics of high titanium slag were analyzed. Through the single factor and the orthogonal experiment methods, the effects of material particle size, mass ratio of acid to ore, roasting temperature, and roasting time on the acidolysis ratio of TiO<sub>2</sub> during the process of roasting high titanium slag with concentrated sulfuric acid were systematically investigated. The results show that the sequence of each factor affecting the acidolysis ratio of TiO<sub>2</sub> is: mass ratio of acid to ore, roasting time, and roasting temperature. The optimum technological conditions are obtained as mass ratio of acid to ore of 2.1, roasting temperature of 310°C, roasting time of 75min, and material particle size of 45–53μm. The acidolysis ratio of TiO<sub>2</sub> is over 96% under the optimum conditions. The roasting process is proved to be significant in the exploitation and utilization of high titanium slag. The advantages of the proposed roasting process are of high efficiency, low power consumption, and minimum pollution.