期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Healthy function and high valued utilization of edible fungi 被引量:32
1
作者 Yanrong Zhang Dawei Wang +5 位作者 Yuetong Chen Tingting Liu Shanshan Zhang Hongxiu Fan Hongcheng Liu Yu Li 《Food Science and Human Wellness》 SCIE 2021年第4期408-420,共13页
Edible fungi are large fungi with high added value that can be utilized as resources.They are rich in high-quality protein,carbohydrate,various vitamins,mineral elements and other nutrients,and are characterized by hi... Edible fungi are large fungi with high added value that can be utilized as resources.They are rich in high-quality protein,carbohydrate,various vitamins,mineral elements and other nutrients,and are characterized by high protein,low sugar,low fat and low cholesterol.In addition,edible fungi contain a variety of bioactive substances,such as polysaccharides,dietary fiber,steroids,polyphenols,and most of these compounds have antioxidant,anti-tumor and other physiological functions.This review comprehensively discusses the bioactive components and functional characteristics of edible fungi(such as antioxidant,anti-aging,hypolipidemic activities,etc.).Then the recent developments and prospect in the high-valued utilization of edible fungi are discussed and summarized.The objective of this review is to improve the understanding of health-promoting properties of edible fungi,and provide reference for the industrial production of edible fungi-based health products. 展开更多
关键词 Edible fungi Functional components Processing and utilization high valued utilization
下载PDF
Strength Acquisition Mechanism of High Temperature Resistant Materials Prepared by Waste Architectural Ceramics
2
作者 HUANG Zhaohui SHI Tengteng +7 位作者 LIU Yangai WU Xiaowen LIU Xianjie LIN Fankai LENG Gouqin ZHAN Huasheng LI Yanjing GAO Changhe 《China's Refractories》 CAS 2022年第1期8-15,共8页
In order to realize the large-scale and high-value utilization of waste architectural ceramics,high-temperature resistant materials based on waste architectural ceramics were prepared with sodium silicate as the binde... In order to realize the large-scale and high-value utilization of waste architectural ceramics,high-temperature resistant materials based on waste architectural ceramics were prepared with sodium silicate as the binder,clay/bauxite and metakaolin/bauxite as coating materials,and the cold strength obtaining mechanism was explored.The phase composition,the microstructure and the mechanical properties of the high temperature resistant materials based on waste architectural ceramics were tested and analyzed.The results showed that when the heat treatment temperature was between 110-1000℃,the strength of the samples mainly came from the physical adhesion of sodium silicate and fine powder.When the temperature rose to 1100℃,the strength of the sample was improved since the internal low-melting-point components melted and promoted sintering.The addition of clay and bauxite can effectively enhance the flexural strength of the samples when the heat treatment temperature is 1000℃.When the heat treatment temperature rises from 900 to 1000℃,the flexural strength of the samples will be enhanced owing to the formation of silica alumina spinel and mullite from metakaolin. 展开更多
关键词 waste architectural ceramics high value utilization high-temperature resistant materials flexural strength
下载PDF
Development of sustainable and efficient recycling technology for spent Li-ion batteries: Traditional and transformation go hand in hand 被引量:1
3
作者 Zejian Liu Gongqi Liu +4 位作者 Leilei Cheng Jing Gu Haoran Yuan Yong Chen Yufeng Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期802-830,共29页
Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of th... Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs,starting with lithium-ion power batteries.Recent research on raw material collection,metallurgical recovery,separation and purification is highlighted,particularly in terms of all aspects of economic efficiency,energy consumption,technology transformation and policy management.Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored,revealing a clean and efficient closed-loop recovery mechanism.Optimization methods are proposed for future recycling technologies,with a focus on how future research directions can be industrialized.Ultimately,based on life-cycle assessment,the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies.This work is designed to support the sustainable development of the new energy power industry,to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling. 展开更多
关键词 Spent LIBs Transformative recycling LCA analysis Policy guidance high value utilization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部