Precipitation behavior of Ti in high strength steels was investigated by means of the equilibrium solid solubility theory. The contributions of Ti content to yield strength were calculated. The calculated results were...Precipitation behavior of Ti in high strength steels was investigated by means of the equilibrium solid solubility theory. The contributions of Ti content to yield strength were calculated. The calculated results were verified by the hot rolling experiment for C–Mn steel and C–Mn–Ti micro alloyed steel, respectively. The research results show that the precipitates are mainly Ti N at the higher temperature. With the decreasing temperature, the proportion of Ti C in precipitates increases gradually. When the temperature drops to 800 °C, Ti C will become predominant for the precipitation of Ti. When Ti content is less than 0.014%(mass fraction), Ti has little influence on the yield strength. When Ti content is in the range of 0.014%–0.03%(mass fraction), the yield strength of Ti micro alloyed steel is greatly increased, which leads to instability of the mechanical properties of the steel. Therefore, the design of Ti content in high strength steels should avoid this Ti content range. When Ti content is higher than 0.03%, the yield strength increases stably. In this experiment, when added Ti content was controlled in the range of 0.03%–0.05%, the contribution to the yield strength of Ti micro alloyed steel can reach about 92.44 MPa.展开更多
基金Project(U1460204) supported by the Joint Funds of The Iron and Steel Key Project,ChinaProject(2015020180) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(N140704002) supported by the Fundamental Research Funds for the Central Universities,China
文摘Precipitation behavior of Ti in high strength steels was investigated by means of the equilibrium solid solubility theory. The contributions of Ti content to yield strength were calculated. The calculated results were verified by the hot rolling experiment for C–Mn steel and C–Mn–Ti micro alloyed steel, respectively. The research results show that the precipitates are mainly Ti N at the higher temperature. With the decreasing temperature, the proportion of Ti C in precipitates increases gradually. When the temperature drops to 800 °C, Ti C will become predominant for the precipitation of Ti. When Ti content is less than 0.014%(mass fraction), Ti has little influence on the yield strength. When Ti content is in the range of 0.014%–0.03%(mass fraction), the yield strength of Ti micro alloyed steel is greatly increased, which leads to instability of the mechanical properties of the steel. Therefore, the design of Ti content in high strength steels should avoid this Ti content range. When Ti content is higher than 0.03%, the yield strength increases stably. In this experiment, when added Ti content was controlled in the range of 0.03%–0.05%, the contribution to the yield strength of Ti micro alloyed steel can reach about 92.44 MPa.