期刊文献+
共找到11,595篇文章
< 1 2 250 >
每页显示 20 50 100
SULFATE RESISTANCE MECHANISM OF HIGH- PERFORMANCE CONCRETE CONTAINING NCI 被引量:2
1
作者 MA Baoguo Wuhan University of Technology 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1999年第1期6-15,共10页
It is found that the incorporation of Nitrite Corrosion Inhibitor (NCI) greatly weakens the resistance of mixtures to sulfate attack. To study the mechanism of this phenomenon, in this paper, the influence of NCI add... It is found that the incorporation of Nitrite Corrosion Inhibitor (NCI) greatly weakens the resistance of mixtures to sulfate attack. To study the mechanism of this phenomenon, in this paper, the influence of NCI addition on the cement paste and microstructure change of high performance concrete specimens is studied by means of quantitative XRD, SEM tests. The results demonstrate that the incorporation of NCI accelerates the formation of calcium hydroxide and ettringite crystals, and weakens the pore refinement effect caused by the secondary hydration reaction of fly ash and microsilica. At the age up to one year, the relative crystal quantity in mixture containing NCI is always higher than that in control mixture. The reasons for the degradation in sulfate resistance of mixtures may be attributed to the increase and stability of the calcium hydroxide and ettringite crystals formed and the weakening of secondary hydration reaction. Based on the results, conclusion can be drawn that NCI should be used cautiously in practical engineering where high resistance to sulfate attack is required. (Author abstract) 7 Refs. 展开更多
关键词 nitrite corrosion inhibitor high-performance concrete MICROSTRUCTURE sulfate resistance
下载PDF
Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
2
作者 丁庆军 ZHOU Changsheng +4 位作者 张高展 GUO Hong LI Yang ZHANG Yongyuan GUO Kaizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期673-681,共9页
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ... We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering. 展开更多
关键词 ultra-high performance concrete mechanical properties fine aggregates MICROSTRUCTURE NANOINDENTATION
下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
3
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load Explosion resistance performance Model test POLYUREA concrete box girder Numerical simulation
下载PDF
The Influence of Chemical Admixtures on the Fluidity,Viscosity and Rheological Properties of Ultra-High Performance Concrete
4
作者 Jin Yang Hailong Zhao +3 位作者 Jingyi Zeng Ying Su Mengdi Zhu Xingyang He 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2163-2181,共19页
To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosit... To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosity.In this study,the effects of liquid and powder polycarboxylate superplasticizers(PCE)on UHPC are compared and critically discussed.Moreover,the following influential factors are considered:air-entraining agents(AE),slump retaining agents(SA),and defoaming agents(DF)and the resulting flow characteristics,mechanical properties,and hydration properties are evaluated assuming UHPC containing 8‰powder PCE(PCE-based UHPC).It is found that the spread diameter of powder PCE is 5%higher than that of liquid PCE.Among the chemical admixtures studied,AEs have the best effect on improving UHPC workability,while DFs have the worst effect.When the addition of AE and SA is 1.25‰and 14.7%of PCE,paste viscosity reduces by 35%and 19%,respectively compared to the paste with only 8‰PCE.A low AE dosage(1.25‰)decreases compressive strength by 4.1%,while SA(8.1%)increases UHPC compressive strength by 9.1%.Both AE and SA significantly delay the UHPC hydration process,reducing the hydration heat release peaks by 76%and 27%,respectively. 展开更多
关键词 Ultra-high performance concrete polycarboxylate superplasticizer air-entraining agent slump retaining agent rheological properties
下载PDF
Effect of Shrinkage Reducing Agent and Steel Fiber on the Fluidity and Cracking Performance of Ultra-High Performance Concrete
5
作者 Yong Wan Li Li +4 位作者 Jiaxin Zou Hucheng Xiao Mengdi Zhu Ying Su Jin Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1941-1956,共16页
Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ... Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively. 展开更多
关键词 Ultra-high performance concrete chemical shrinkage reducing agent steel fiber shrinkage cracking repair and reinforcement
下载PDF
INFLUENCE OF MINERAL ADMIXTURES ON MECHANICAL PROPERTIES OF HIGH-PERFORMANCE CONCRETE 被引量:4
6
作者 Ma, Baoguo Li, Jinzong Peng, Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1999年第2期1-7,共7页
The improvements of the mechanical properties, including bulk density of fresh mixtures, elastic modulus, and compressive strengths of four high-performance concrete mixtures, made with the addition of fly ash, refine... The improvements of the mechanical properties, including bulk density of fresh mixtures, elastic modulus, and compressive strengths of four high-performance concrete mixtures, made with the addition of fly ash, refined ground blast - furnace microslag (microslag) and silica fume are studied. The concrete mixtures were determined based on the dispersion testing results. The study indicates that the elastic modulus at 28 and 91 days, and compressive strengths of the concretes are improved a lot when fly ash and microslag by 25 percent by weight of cement are added into the mixtures individually. The improvement is especially evident when silica fume by 5 percent and fly ash by 25 percent by weight of cement are added together into the mixture, while the fresh concrete mixture keeps a good workability. Through the analysis of chemically combined water ratios of the four mixtures at various hydration ages, it is found that the addition of all these mineral mixtures are beneficial to the hydration process, especially, at later stages, which might be one of the reasons for the improvement of mechanical properties. (Author abstract) 4 Refs. 展开更多
关键词 high-performance concrete mineral admixture mechanical properties
下载PDF
Creep experimental test and analysis of high-performance concrete in bridge 被引量:1
7
作者 陈志华 袁健 《Journal of Central South University》 SCIE EI CAS 2008年第S1期577-581,共5页
Factors that have effect on concrete creep include mixture composition,curing conditions,ambient exposure conditions,and element geometry.Considering concrete mixtures influence and in order to improve the prediction ... Factors that have effect on concrete creep include mixture composition,curing conditions,ambient exposure conditions,and element geometry.Considering concrete mixtures influence and in order to improve the prediction of prestress loss in important structures,an experimental test under laboratory conditions was carried out to investigate compression creep of two high performance concrete mixtures used for prestressed members in one bridge.Based on the experimental results,a power exponent function of creep degree for structural numerical analysis was used to model the creep degree of two HPCs,and two series of parameters of this function for two HPCs were calculated with evolution program optimum method.The experimental data was compared with CEB-FIP 90 and ACI 209(92) models,and the two code models both overestimated creep degrees of the two HPCs.So it is recommended that the power exponent function should be used in this bridge structure analysis. 展开更多
关键词 CEMENT concrete CREEP high-performance concrete(HPC)
下载PDF
STUDY ON OPTIMIZATION OF HIGH PERFORMANCE CONCRETE ADMIXTURES 被引量:7
8
作者 刘俊龙 麻海燕 +2 位作者 李强 陈树东 张云清 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期206-210,共5页
Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polyca... Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polycarboxlic series high range water reduce agent and sodium sulfate hardening accelerating agent. Two kinds of curing condition, namely steam curing condition and standard curing condition, are adopted. The result shows that HPC, added with polycarboxlic series of high performance water reducer, has high workability and strength, while sodium sulfate accelerating agent causes poor workability and low strength. Thus for vapor-cured HPC and its formulations, naphthalene series high range water reducing agent with less sodium sulfate should be given pri- ority. Therefore, the differences of curing conditions should be considered when selecting HPC admixtures. 展开更多
关键词 high performance concrete high performance water reducer hardening accelerating agent SLUMP compressive strength
下载PDF
Assessment of early-age cracking of high-performance concrete in restrained ring specimens 被引量:2
9
作者 Quang-phu NGUYEN Lin-hua JIANG Qiao ZHU 《Water Science and Engineering》 EI CAS 2010年第1期113-120,共8页
High-performance concrete (HPC) is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed earl... High-performance concrete (HPC) is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed early-age cracking of HPC for two mixtures using restrained ring tests. The two mixtures were produced with water/binder mass ratio (mw/mB) of 0.22 and 0.40, respectively. The results show that, with greater steel thickness, the higher degree of restraint resulted in a higher interface pressure and earlier cracking. With steel thickness of 6 mm, 19 mm, and 30 mm, the age of cracking were, respectively, 12 days, 8 days, and 5.4 days with the mw/mB = 0.22 mixture; and 22.5 days, 12.6 days, and 7.1 days with the mw/mB= 0.40 mixture. Cases of the same steel thickness show that the ring specimens with a thicker concrete wall crack later. With the mw/mB = 0.22 mixture, concrete walls with thicknesses of 37.5 mm, 75 mm, and 112.5 mm cracked at 3.4 days, 8.0 days, and 9.8 days, respectively; with the mw/mB = 0.40 mixture, the ages of cracking were 7.1 days, 12.6 days, and 16.0 days, respectively. 展开更多
关键词 high-performance concrete SHRINKAGE early-age cracking restrained ring test
下载PDF
Spalling and Mechanical Properties of Fiber Reinforced High-performance Concrete Subjected to Fire 被引量:3
10
作者 董香军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期743-749,共7页
Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC).... Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC). At the same time, the temperature-increasing velocity and constrained conditions of concrete element also play significant roles in spalling. Steel fibers cannot reduce the risk of spalling, although they have obvious beneficial effects on the mechanical properties of concrete before and after exposure to fire. Polypropylene (PP) fibers are very useful in preventing HPC from spalling, however, they have negative effects on the strengths. By using hybrid fibers (steel fibers+PP fibers), both good anti-spalling performance and improved mechanical properties come true, which may provide necessary safe guarantee for the rescue work and structure repair after fire disaster. 展开更多
关键词 fiber reinforced high-performance concrete (FRHPC) FIRE SPALLING compressive strength flexural toughness
下载PDF
Influence of shrinkage-reducing admixture on drying shrinkage and mechanical properties of high-performance concrete 被引量:5
11
作者 Nguyen Quangphu Jiang Linhua +2 位作者 Liu Jiaping Tian Qian Do Tienquan 《Water Science and Engineering》 EI CAS 2008年第4期67-74,共8页
High-performance concrete (HPC) has specific performance advantages over conventional concrete in strength and durability. HPC mixtures are usually produced with water/binder mass ratios (mW/mB) in the range of 0.... High-performance concrete (HPC) has specific performance advantages over conventional concrete in strength and durability. HPC mixtures are usually produced with water/binder mass ratios (mW/mB) in the range of 0.2-0.4, so volume changes of concrete as a result of drying, chemical reactions, and temperature change cannot be avoided. For these reasons, shrinkage and cracking are frequent phenomena. It is necessary to add some types of admixture for reduction of shrinkage and cracking of HPC. This study used a shrinkage-reducing admixture (SRA) for that purpose. Concrete was prepared with two different mW/mB (0.22 and 0.40) and four different mass fractions of SRA to binder (w(SRA) = 0%, 1%, 2%, and 4%). The mineral admixtures used for concrete mixes were: 25% fly ash (FA) and 25% slag by mass of binder for the mixture with mW/mB = 0.40, and 15% silica fume (SF) and 25% FA for the mixture with mW/mB = 0.22. Tests were conducted on 24 prismatic specimens, and shrinkage strains were measured through 120 days of drying. Compressive strength, splitting strength, and static modulus of elasticity were also determined. The results show that the SRA effectively reduces some mechanical properties of HPC. The reductions in compressive strength, splitting tensile strength, and elastic modulus of the concrete were 7%-24%, 9%-19%, and 5%-12%, respectively, after 90 days, compared to concrete mixtures without SRA. SRA can also help reduce drying shrinkage of concrete. The shrinkage strains of HPC with SRA were only as high as 41% of the average free shrinkage of concrete without SRA after 120 days of drying. 展开更多
关键词 high-performance concrete shrinkage-reducing admixture compressive strength elastic modulus splitting tensile strength drying shrinkage
下载PDF
Seismic Performance of High-Strength Short Concrete Column with High-Strength Stirrups Constraints 被引量:3
12
作者 Hongyan Ding Yuan Liu +1 位作者 Chao Han Yaohua Guo 《Transactions of Tianjin University》 EI CAS 2017年第4期360-369,共10页
The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The inf... The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The influences of reinforcement strength, stirrup ratio and shear span ratio were also compared. Test results reveal that the restriction effect of stirrups can improve the peak stress, so the bearing capacity of specimen can be improved; for the high-strength short concrete column with high-strength stirrups, it was more reasonable to use ultimate displacement angle to reflect the ductility of the specimen, and the yield strength of high-strength stirrups should be devalued when calculating the stirrup characteristic value; the seismic performance of short column would be improved with the increase of volume–stirrup ratio and shear span ratio; the high-strength stirrups and high-strength longitudinal reinforcements did not yield when the load acting on the specimen reached the peak value, which brought adequate safety stock to these short columns. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Columns (structural) concrete construction concreteS HYSTERESIS Reinforced concrete Reinforcement Seismic waves SEISMOLOGY Shear flow
下载PDF
Strength Regularity and Failure Criterion of High-Strength High-Performance Concrete under Multiaxial Compression 被引量:1
13
作者 何振军 宋玉普 《Journal of Southwest Jiaotong University(English Edition)》 2008年第2期144-149,共6页
Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were p... Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified. 展开更多
关键词 high-strength high-performance concrete (HSHPC) Normal strength concrete (NSC) Stress ratio Multiaxial corn- pressive slxength Failure criterion
下载PDF
FAILURE MODE AND CONSTITUTIVE MODEL OF PLAIN HIGH-STRENGTH HIGH-PERFORMANCE CONCRETE UNDER BIAXIAL COMPRESSION AFTER EXPOSURE TO HIGH TEMPERATURES 被引量:2
14
作者 Zhenjun He Yupu Song 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期149-159,共11页
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for char... An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures uniaxial biaxial compressive strength failure criterion stress-strain relationship
下载PDF
Seismic Performance of Steel Reinforced Ultra High-strength Concrete Columns 被引量:1
15
作者 贾金青 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2009年第3期216-222,230,共8页
The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of e... The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of experimental specimens ranged from 92.9 MPa to 108.1 MPa.The main experimental variables affecting seismic performance of specimens were axial load ratio and stirrup reinforcement ratio.The columns(λ=2.75) subjected to low cyclic reversed lateral loads failed mainly in the flexural-shear mode failure and columns(λ≤2.0) subjected to low cyclic reversed lateral loads failed mainly in the shear mode failure.Shear force-displacement hysteretic curves and skeleton curves were drawn.Coefficient of the specimen displacement ductility was calculated.Experimental results indicate that ductility decreases with axial pressure ratio increasing,and increases with stirrup reinforcement ratio increasing.Limit values of axial pressure ratio and minimum stirrup reinforcement ratio of columns are proposed to satisfy definite ductility requirement.The suggested values provide a reference for engineering application and for the amendment of the current Chinese design code of steel reinforced concrete composite structures. 展开更多
关键词 建筑结构 建筑物 抗震设计 混凝土结构
下载PDF
INFLUENCE OF AIRCRAFT DEICER ON FREEZE-THAW DURABILITY OF HIGH PERFORMANCE CONCRETE
16
作者 麻海燕 曹文涛 +2 位作者 白康 周鹏 韩丽娟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第4期306-312,共7页
The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accel... The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accelerated freeze-thaw test.Four kinds of the solution,i.e.,tap water,3.5% NaCl solution,glycol solutions,and a LBR-A type commercial aircraft deicer are employed.Results show that freeze-thaw durability of HPC exposed to glycol solutions is closely related to the solution concentrations.The failure of HPC exposed to 3.5% glycol solution is similar to that of those exposed to 3.5% NaCl solution,i.e.,serious surface scaling.While the damage of HPC exposed to 12.5%—25% glycol solutions is postponed.Compared with glycol solution,the commercial aircraft deicer has much more negative effects on HPC freeze-thaw durability compared with 3.5% NaCl solution.In the presence of commercial aircraft deicer for HPC subjected to freeze-thaw cycles,the deterioration is mainly due to scaling and spalling. 展开更多
关键词 concrete pavements DURABILITY aircraft deicer freeze-thaw cycles high performance concrete
下载PDF
Experimental Research on Early-Age Property of High-Performance Concrete Column by Embedded Sensors
17
作者 贠英伟 张晓玲 +1 位作者 何朋立 王帅 《Journal of Southwest Jiaotong University(English Edition)》 2008年第3期242-246,共5页
This paper aims at monitoring the autogenous shrinkage (AS) of a high-performance concrete (HPC) column specimen using an embedded strain gauge just after concrete pouring. A real size specimen (40 cm×40 cm&... This paper aims at monitoring the autogenous shrinkage (AS) of a high-performance concrete (HPC) column specimen using an embedded strain gauge just after concrete pouring. A real size specimen (40 cm×40 cm×100cm) was made to simulate the structural members in construction site. The results show that the amount of HPC AS is comparable to that of drying shrinkage and even larger than it, so AS can not be omitted for HPC. By comparing the plain HPC and reinforced HPC specimens, the influences of reinforced bars on autogenous shrinkage and temperature distribution were obtained. 展开更多
关键词 high-performance concrete Autogenous shrinkage Embedded strain gauge Temperature distribution
下载PDF
BOND PERFORMANCE EXPERIMENT FOR FLY ASH CONCRETE AND STEEL BAR
18
作者 王倩 吴瑾 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期302-306,共5页
The impact of fly ash content on bond performance of steel bars and their surrounding concrete is studied by means of sticking strain gauges on steel bars. The average bond stress-slip curves, the steel strain-anchor ... The impact of fly ash content on bond performance of steel bars and their surrounding concrete is studied by means of sticking strain gauges on steel bars. The average bond stress-slip curves, the steel strain-anchor location curves, and the bond stress-anchor position curves of the pullout specimens with various fly ash contents are obtained. Results indicate that the bond performance of concrete and steel bars can be improved and the distribution of steel strain along the anchorage length tends to be more uniform by adding fly ash in concrete specimens, and both ultimate bond stress and ultimate slip deformation increase the most when 20% of specimens′ content is fly ash. 展开更多
关键词 fly ash concrete bond performance fly ash content bond stress distribution
下载PDF
INITIAL BINDING CAPACTIES OF CHLORIDE ION OF COMPONENTS IN HIGH-PERFORMANCE CONCRETE
19
作者 马保国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1998年第4期16-24,共9页
An investigation is reported on the influence of different components of high performance concrete (HPC) on the initial binding capacities (IBC) of chloride ion. The testing results demonstrate that cement has the lar... An investigation is reported on the influence of different components of high performance concrete (HPC) on the initial binding capacities (IBC) of chloride ion. The testing results demonstrate that cement has the largest IBC, and the relative binding ratio is as high as 30% of total ion amount. Among the mineral admixtures, fly ash has the largest IBC of chloride ion. The IBC of silica fume is about 14.4%, which is smaller than that of fly ash. The IBC of refined ground blast-furnace slag (microslag) is abnormal due to the influence of sulfate ion contained. The addition of superplasticizer and corrosion inhibitor containing calcium nitrite weakens the IBC of mixtures. The fluidity and pore-filling effect of mineral admixtures are studied with paste samples with WIC ratio of 0.3. The influence mechanism of various components in high-performance concrete in IBC is studied further through SEM and Mercury Instrusion Porosimetry tests with paste samples at the age of 3 days. 展开更多
关键词 high-performance concrete super-plasticizer corrosion inhibitor initial binding capacity PERMEABILITY
全文增补中
Fiber-reinforced Mechanism and Mechanical Performance of Composite Fibers Reinforced Concrete 被引量:4
20
作者 申俊敏 ZHANG Yancong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期121-130,共10页
To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evalua... To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties. 展开更多
关键词 CEMENT concrete composite fibers mechanical performance fiber-reinforced mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部