Some milk-associated proteins are known to be nutritionally valuable and form bioactive peptides that exhibit activity against hypertension and oxidative stress. Consumption of cheeses, such as the popular Hispanic-st...Some milk-associated proteins are known to be nutritionally valuable and form bioactive peptides that exhibit activity against hypertension and oxidative stress. Consumption of cheeses, such as the popular Hispanic-style cheese Queso Fresco (QF), may be a vehicle for delivery of these milk-associated peptides. This paper describes the effects of high-pressure processing (HPP) on the antioxidative activity (ORAC- FL value) of water-soluble proteins extracted from QF samples. QFs were manufactured according to a commercial-make procedure using pasteurized, homogenized milk, without added starter cultures. The cheese was cut into 45 × 45 × 150 mm3 blocks, double packaged in vacuum bags, and received the following HPP treatments: 200, 400, or 600 MPa for either 0, 5, 10, or 20 min, with warming to an internal temperature of either 22℃ or 40℃ prior to HPP treatment. Results show that the core temperature of the cheese during HPP directly affects the ORAC-FL value. The activities of the lower temperature cheeses are independent of time and pressure, and have a median ORAC-FL value of 27 trolox equivalents (TE). The higher temperature cheeses have higher ORAC-FL values ranging from 21.5 to 96.0 TE;the highest activity corresponded to the cheese held at 400 MPa for the longest time under pressure (20 min). The 600 MPa cheeses increase in activity with increasing time under pressure, but are less active than the control cheese. These results indicate that processing temperature and pressure are important factors in the antioxidative activity of these QF samples and further understanding of the roles of these variables may lead to the manufacture of healthier and more nutritious cheeses and dairy products.展开更多
The objectives of this study are to research the relationship between pectin and the softening of peach by soaking in citric acid solutions for 24 h at 35 ℃, pressurizing for 30 rain at 500 MPa or heating for 10 min....The objectives of this study are to research the relationship between pectin and the softening of peach by soaking in citric acid solutions for 24 h at 35 ℃, pressurizing for 30 rain at 500 MPa or heating for 10 min. Also, comparing high-pressure-induced jam (HP-jam) and heat-induced jam (H-jam) were evaluated. It was found that firmness of the peach decreased greatly when soaked at pH 2.0 〉 heated 〉 soaked at pH 2.2 or 2.5 〉 pressurized, respectively. About 88% of the peach pectin was water-soluble-pectin and high-methoxyl pectin, while low-methoxyl pectin was slight. During pressurization, the pectin did not change. However, pectin degraded through hydrolysis during heating; consequently, the middle lamella separated. Also, eight kinds of peach jam (65% sugar, pH 2.0 or pH 2.2, and 50% or 60% sugar, pH 2.5) were compared. Both color and flavor of HP-jam were better than H-jam. As the pH values were lower, L-, a-, b-values of jam became higher, and the jam became pinker. Raw peach contained about 0.3%-0.4% pectin, therefore, an addition of 0.6% pectin was needed for both HP- and H-jams. However, there was no great difference in rheology or sensory evaluation between HP- and H-jams.展开更多
The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to ...The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to be overcome through the increase in molecular energy and molecular collision rates. High pressures-up to millions of bars using diamond anvil cells-can be achieved in the laboratory, and lead to many new routes for chemical synthesis and the synthesis of new materials with desirable thermody- namic, transport, and electronic properties. On the industrial scale, however, high-pressure processing is currently limited by the cost of compression and by materials limitations, so that few industrial processes are carried out at pressures above 25 MPa. An alternative approach to high-pressure processing is pro- posed here, in which very high local pressures are generated using the surface-driven interactions from a solid substrate. Recent experiments and molecular simulations show that such interactions can lead to local pressures as high as tens of thousands of bars (1 bar=1×10^5 Pa), and even millions of bars in some cases. Since the active high-pressure processing zone is inhomogeneous, the pressure is different in dif- ferent directions. In many cases, it is the pressure in the direction parallel to the surface of the substrate (the tangential pressure) that is most greatly enhanced. This pressure is exerted on the molecules to be processed, but not on the solid substrate or the containing vessel. Current knowledge of such pressure enhancement is reviewed, and the possibility of an alternative route to high-pressure processing based on surface-driven forces is discussed. Such surface-driven high-pressure processing would have the advantage of achieving much higher pressures than are possible with traditional bulk-phase processing, since it eliminates the need for mechanical compression. Moreover, no increased pressure is exerted on the containing vessel for the process, thus eliminating concerns about materials failure.展开更多
Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun...Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.展开更多
In this paper, the time dependent effects of various pressure treatments on the characteristics of lotus-seed starch which was modified by ultra-high pressure (UHP) were investigated. The results showed that the pol...In this paper, the time dependent effects of various pressure treatments on the characteristics of lotus-seed starch which was modified by ultra-high pressure (UHP) were investigated. The results showed that the polarization cross of lotus-seed starch granules was weakening gradually with increasing the treatment time, which indicated the termination of their ordered crystallite structures. The morphologies of granules were collapsed once the UHP was kept at 500 MPa for 60 minutes. The particle size analysis demonstrated that the granule size and distribution of lotus-seed starches increased as the treatment time was prolonged. X-ray diffraction studies showed that the intensity of the feature diffraction peaks of starch decreased and eventually disappeared with increasing the treatment time, and B-type transformation pattern was observed. The Fourier transform infrared spectra (FTIR) analysis of starch showed that the UHP is a physical modification processing because no new groups formed. The research showed that UHP processing at certain degree is capable to achieve the modification of lotus-seed starch. It is of significance for the deep processing of lotus-seed products.展开更多
With permanent down-hole gauges (PDGs) widely installed in oilfields around the world in recent years, a continuous stream of transient pressure data in real time is now available, which motivates a new round of res...With permanent down-hole gauges (PDGs) widely installed in oilfields around the world in recent years, a continuous stream of transient pressure data in real time is now available, which motivates a new round of research interests in further developing pressure transient processing and analysis techniques. Transient pressure measurements from PDG are characterized by long term and high volume data. These data are recorded under unconstrained circumstances, so effects due to noise, rate fluctuation and interference from other wells cannot be avoided. These effects make the measured pressure trends decline or rise and then obscure or distort the actual flow behavior, which makes subsequent analysis difficult. In this paper, the problems encountered in analysis of PDG transient pressure are investigated. A newly developed workflow for processing and analyzing PDG transient pressure data is proposed. Numerical well testing synthetic studies are performed to demonstrate these procedures. The results prove that this new technique works well and the potential for practical application looks very promising.展开更多
With the development of technology, several new processing techniques are being introduced for the food industry. By applying those novel techniques to food systems, it has been found that the structural and functiona...With the development of technology, several new processing techniques are being introduced for the food industry. By applying those novel techniques to food systems, it has been found that the structural and functional properties of food could be altered. Microfluidization which is also known as high pressure homogenization is one of the novel technologies that could be applied in food industry to obtain many beneficial outcomes. High pressure processing is another novel technique that is mainly playing the microbicidal effect. This work is concerned on the possibility of using microfluidization and high pressure processing in food industry based on the experimental findings. These techniques could be used as useful tools in the field of food science and technology.展开更多
In this paper, the critical pressure pcrit and impeding pressure pimpe of the elemental evaporation were defined and studied based on the calculation of the relationship between the evaporation loss rate Nm and the ch...In this paper, the critical pressure pcrit and impeding pressure pimpe of the elemental evaporation were defined and studied based on the calculation of the relationship between the evaporation loss rate Nm and the chamber pressure p during melting of NiAl alloys. When the chamber pressure is lower than pcrit or higher than Pimpe Nm tends to be the maximum or minimum value and remains almost unchanged. However, declines sharply with the increase of the chamber pressure when pcrit<P<Pimpe. A method has been put forward to calculate the pcrit and pimpe of Al evaporation in a Ni-XAI (x=25-50 at. pct) melt. The calculation result shows that the pcrit or pimpe is a second-order function of the molar percentage of Al and the melting temperature.展开更多
A new model was established to calculate the real vapor pressure of Al in the molten Ni-xAl (at.pct) (x=25;0) alloy. The effects of the holding time, chamber pressure, mole fraction of Al and melting temperature o...A new model was established to calculate the real vapor pressure of Al in the molten Ni-xAl (at.pct) (x=25;0) alloy. The effects of the holding time, chamber pressure, mole fraction of Al and melting temperature on the real vapor pressure of Al in the vacuum chamber were analyzed. Because of the impeding effect of the real vapor pressure on the evaporation loss rate, within a short time (less than 10 s), the real vapor pressure tends to a constant value. When the chamber pressure is less than the saturated vapor pressure of Al, the real vapor pressure of Al is equal to the chamber pressure. While when the chamber pressure is higher than the saturated vapor pressure, the real vapor pressure of Al approaches to the saturated vapor pressure of Al of the same condition.展开更多
One of the major advantages of utilizing atmospheric pressure plasma processing (APPP) technology to fabricate ultra-precision optics is that there is no subsurface damage during the process. In APPP, the removal fo...One of the major advantages of utilizing atmospheric pressure plasma processing (APPP) technology to fabricate ultra-precision optics is that there is no subsurface damage during the process. In APPP, the removal footprint and removal rate are critical to the capability and efficiency of the figuring of the optical surface. In this paper, an atmospheric plasma torch, which can work in both remote mode and contact mode, is presented. The footprints and the removal rates of both modes are compared by profilometer measurements. The influences of process recipes and substrate thickness for both modes are investigated through a series of experiments. When the substrate is thinner than 12 mm, the removal rate in contact mode is higher. However, the removal rate and width of the footprint decrease dramatically as the substrate thickness increases in contact mode.展开更多
In order to get ultra-smooth fused silica surface without subsurface damage efficiently, the atmospheric pressure plasma processing( APPP) method has been developed. It is based on chemical reaction between active rad...In order to get ultra-smooth fused silica surface without subsurface damage efficiently, the atmospheric pressure plasma processing( APPP) method has been developed. It is based on chemical reaction between active radicals excited by plasma and workpiece surface atoms,so the subsurface damage caused by contact stress can be avoided and atomic-level precision can be ensured. In this paper,based on the spectral quantitative analysis theory,the influence laws on material removal rate by the key factors of APPP including the flow rate of reaction gases,the input power,the processing distance and time are discussed. In addition,the results that APPP can remove the damaged surface layer and do not introduce secondary damage are proved via the nanoindentation technology.展开更多
Energy and resources including coal, oil, and gas are in demand all over the world. Because these resources near the earth's surface have been exploited for many years, the extraction depth has increased.As mining...Energy and resources including coal, oil, and gas are in demand all over the world. Because these resources near the earth's surface have been exploited for many years, the extraction depth has increased.As mining shafts in the coal extraction process become deeper, especially in western China, an artificial freezing method is used and is concentrated in the fractured rock mass. The frost-heaving pressure(FHP)is directly related to the degree of damage of the fractured rock mass. This paper is focused on FHP during the freezing process, with emphasis on the frost-heaving phenomenon in engineering materials. A review of the frost phenomenon in the geotechnical engineering literature indicates that:(1) During the soil freezing process, the ice content that is influenced by unfrozen water and the freezing rate are the determining factors of FHP;(2) During the freezing process of rock and other porous media, the resulting cracks should be considered because the FHP may damage the crack structure;(3) The FHP in a joint rock mass is analyzed by the joint deformation in field and experimental tests and can be simulated by the equivalent expansion method including water migration and joint deformation.展开更多
This study was designed to measure the pressure distribution of the intervertebral disc under different degrees of distraction of the interspinous process, because of a suspicion that the degree of distraction of the ...This study was designed to measure the pressure distribution of the intervertebral disc under different degrees of distraction of the interspinous process, because of a suspicion that the degree of distraction of the spinous process may have a close relationship with the disc load share. Six human cadaver lumbar spine L2-L5 segments were loaded in flexion, neutral position, and extension. The L3-L4 disc load was measured at each position using pressure measuring films. Shape-memory interspinous process implants (SMID) with different spacer heights, ranging in size from 10 to 20 mm at 2 mm increments, were used. It was found that a SMID with a spacer height equal to the distance of the interspinous process in the neutral position can share the biomechanical disc load without a significant change of load in the anterior annulus. An interspinous process stabilizing device (IPD) would not be appropriate to use in those cases with serious spinal stenosis because the over-distraction of the interspinous process by the SMID would lead to overloading the anterior annulus which is a recognized cause of disc degeneration.展开更多
As energy crisis and environment pollution all around the world threaten the widespread use of fossil fuels,compressed natural gas(CNG)vehicles are explored as an alternative to the conventional gasoline powered vehic...As energy crisis and environment pollution all around the world threaten the widespread use of fossil fuels,compressed natural gas(CNG)vehicles are explored as an alternative to the conventional gasoline powered vehicles.Because of the limited space available for the car,the composite pressure vessel(TypeⅡ)has been applied to the CNG vehicles to reach large capacity and weight lightening vehicles.High pressure vessel(TypeⅡ)is composed of a composite layer and a metal liner.The metal liner is formed by the deep drawing and ironing(D.D.I.)process,which is a complex process of deep drawing and ironing.The cylinder part is reinforced by composite layer wrapped through the filament winding process and is bonded to the liner by the curing process.In this study,an integrated design method was presented by establishing the techniques for FE analysis of entire processes(D.D.I.,filament winding and curing processes)to manufacture the CNG composite pressure vessel(TypeⅡ).Dimensions of the dies and the punches of the 1 st(cup drawing),2 nd(redrawing-ironing 1-ironing 2)and 3 rd(redrawing-ironing)stages were calculated theoretically,and shape of tractrix die to be satisfied with the minimum forming load was suggested for life improvement and manufacturing costs in the D.D.I.process.Thickness of the composite material was determined in the filament winding process,finally,conditions of the curing process(number of heating stage,curing temperature,heating rate and time)were proposed to reinforce adhesive strength between the composite layers.展开更多
Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd ju...Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.展开更多
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi...An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.展开更多
The author makes a brief review of the history and the status quo of high pressure hydrocracking catalysts/processes development in China and gives out some thoughts and suggestions on the prospect of the said technol...The author makes a brief review of the history and the status quo of high pressure hydrocracking catalysts/processes development in China and gives out some thoughts and suggestions on the prospect of the said technology.展开更多
A new casting method, the vacuum-sealed mold casting under pressure, has been developed, and thin wall iron castings with high precision and smooth surface have been produced successfully with this casting method. The...A new casting method, the vacuum-sealed mold casting under pressure, has been developed, and thin wall iron castings with high precision and smooth surface have been produced successfully with this casting method. The experimental results show that the liquid iron has a very excellent filling ability because a high negative pressure is formed in the mold cavity during filling process. The vacuum-sealed mold under pressure has very high compressive strength greater than 650 kPa, which is 3-4 times as high as that of the molds produced by high-pressure molding process or vacuum-sealed molding process.展开更多
During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional ci...During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional circular mode has been appliedto the EPC process. The molding properties of unbonded sand obtained by this new vibration mode are investigated andcompared with those in the one-dimensional vertical mode. For adequate compaction of sand. the circular vibration mode ismore effective than the vertical mode. Sand became more fluidized by the circular vibration and the particle pressure coefficientwas close to unity The particle pressure coefficient, which is defined as the ratio of horizontal to vertical sand pressure, isresponsible for the effectiveness of sand filling.展开更多
Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be charact...Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be characterized as a stationary non-Gaussian field. This paper reviews several simulation algorithms related to the Spectral Representation Method (SRM) and the Static Transformation Method (STM). Polynomial and Exponential transformation functions (PSTM and ESTM) are discussed. Deficiencies in current algorithms, with respect to accuracy, stability and efficiency, are analyzed, and the algorithms are improved for better practical application. In order to verify the improved algorithm, wind pressure fields on a large-span roof are simulated and compared with wind tunnel data. The simulation results fit well with the wind tunnel data, and the algorithm accuracy, stability and efficiency are shown to be better than those of current algorithms.展开更多
文摘Some milk-associated proteins are known to be nutritionally valuable and form bioactive peptides that exhibit activity against hypertension and oxidative stress. Consumption of cheeses, such as the popular Hispanic-style cheese Queso Fresco (QF), may be a vehicle for delivery of these milk-associated peptides. This paper describes the effects of high-pressure processing (HPP) on the antioxidative activity (ORAC- FL value) of water-soluble proteins extracted from QF samples. QFs were manufactured according to a commercial-make procedure using pasteurized, homogenized milk, without added starter cultures. The cheese was cut into 45 × 45 × 150 mm3 blocks, double packaged in vacuum bags, and received the following HPP treatments: 200, 400, or 600 MPa for either 0, 5, 10, or 20 min, with warming to an internal temperature of either 22℃ or 40℃ prior to HPP treatment. Results show that the core temperature of the cheese during HPP directly affects the ORAC-FL value. The activities of the lower temperature cheeses are independent of time and pressure, and have a median ORAC-FL value of 27 trolox equivalents (TE). The higher temperature cheeses have higher ORAC-FL values ranging from 21.5 to 96.0 TE;the highest activity corresponded to the cheese held at 400 MPa for the longest time under pressure (20 min). The 600 MPa cheeses increase in activity with increasing time under pressure, but are less active than the control cheese. These results indicate that processing temperature and pressure are important factors in the antioxidative activity of these QF samples and further understanding of the roles of these variables may lead to the manufacture of healthier and more nutritious cheeses and dairy products.
文摘The objectives of this study are to research the relationship between pectin and the softening of peach by soaking in citric acid solutions for 24 h at 35 ℃, pressurizing for 30 rain at 500 MPa or heating for 10 min. Also, comparing high-pressure-induced jam (HP-jam) and heat-induced jam (H-jam) were evaluated. It was found that firmness of the peach decreased greatly when soaked at pH 2.0 〉 heated 〉 soaked at pH 2.2 or 2.5 〉 pressurized, respectively. About 88% of the peach pectin was water-soluble-pectin and high-methoxyl pectin, while low-methoxyl pectin was slight. During pressurization, the pectin did not change. However, pectin degraded through hydrolysis during heating; consequently, the middle lamella separated. Also, eight kinds of peach jam (65% sugar, pH 2.0 or pH 2.2, and 50% or 60% sugar, pH 2.5) were compared. Both color and flavor of HP-jam were better than H-jam. As the pH values were lower, L-, a-, b-values of jam became higher, and the jam became pinker. Raw peach contained about 0.3%-0.4% pectin, therefore, an addition of 0.6% pectin was needed for both HP- and H-jams. However, there was no great difference in rheology or sensory evaluation between HP- and H-jams.
基金the US National Science Foundation (CBET-1603851 and CHE-1710102) for support of this workthe National Science Center of Poland (DEC-2013/09/B/ST4/03711) for support
文摘The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to be overcome through the increase in molecular energy and molecular collision rates. High pressures-up to millions of bars using diamond anvil cells-can be achieved in the laboratory, and lead to many new routes for chemical synthesis and the synthesis of new materials with desirable thermody- namic, transport, and electronic properties. On the industrial scale, however, high-pressure processing is currently limited by the cost of compression and by materials limitations, so that few industrial processes are carried out at pressures above 25 MPa. An alternative approach to high-pressure processing is pro- posed here, in which very high local pressures are generated using the surface-driven interactions from a solid substrate. Recent experiments and molecular simulations show that such interactions can lead to local pressures as high as tens of thousands of bars (1 bar=1×10^5 Pa), and even millions of bars in some cases. Since the active high-pressure processing zone is inhomogeneous, the pressure is different in dif- ferent directions. In many cases, it is the pressure in the direction parallel to the surface of the substrate (the tangential pressure) that is most greatly enhanced. This pressure is exerted on the molecules to be processed, but not on the solid substrate or the containing vessel. Current knowledge of such pressure enhancement is reviewed, and the possibility of an alternative route to high-pressure processing based on surface-driven forces is discussed. Such surface-driven high-pressure processing would have the advantage of achieving much higher pressures than are possible with traditional bulk-phase processing, since it eliminates the need for mechanical compression. Moreover, no increased pressure is exerted on the containing vessel for the process, thus eliminating concerns about materials failure.
基金supported by National Key R&D Program of China(No.2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)National Natural Science Foundation of China Youth Fund(No.52104230).
文摘Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.
基金supported by Cooperation in Production,Study and Research of Science and Technology Major Projects of Fujian Province(2012N5004)Natural Science Foundation of Fujian Province(2012J01081)+1 种基金Scientific and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province([2012]03)Scientific and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University(cxtd12009)
文摘In this paper, the time dependent effects of various pressure treatments on the characteristics of lotus-seed starch which was modified by ultra-high pressure (UHP) were investigated. The results showed that the polarization cross of lotus-seed starch granules was weakening gradually with increasing the treatment time, which indicated the termination of their ordered crystallite structures. The morphologies of granules were collapsed once the UHP was kept at 500 MPa for 60 minutes. The particle size analysis demonstrated that the granule size and distribution of lotus-seed starches increased as the treatment time was prolonged. X-ray diffraction studies showed that the intensity of the feature diffraction peaks of starch decreased and eventually disappeared with increasing the treatment time, and B-type transformation pattern was observed. The Fourier transform infrared spectra (FTIR) analysis of starch showed that the UHP is a physical modification processing because no new groups formed. The research showed that UHP processing at certain degree is capable to achieve the modification of lotus-seed starch. It is of significance for the deep processing of lotus-seed products.
基金Science Foundation of China University of Petroleum, Beijing (No.YJRC-2011-02)for the financial support during this research
文摘With permanent down-hole gauges (PDGs) widely installed in oilfields around the world in recent years, a continuous stream of transient pressure data in real time is now available, which motivates a new round of research interests in further developing pressure transient processing and analysis techniques. Transient pressure measurements from PDG are characterized by long term and high volume data. These data are recorded under unconstrained circumstances, so effects due to noise, rate fluctuation and interference from other wells cannot be avoided. These effects make the measured pressure trends decline or rise and then obscure or distort the actual flow behavior, which makes subsequent analysis difficult. In this paper, the problems encountered in analysis of PDG transient pressure are investigated. A newly developed workflow for processing and analyzing PDG transient pressure data is proposed. Numerical well testing synthetic studies are performed to demonstrate these procedures. The results prove that this new technique works well and the potential for practical application looks very promising.
文摘With the development of technology, several new processing techniques are being introduced for the food industry. By applying those novel techniques to food systems, it has been found that the structural and functional properties of food could be altered. Microfluidization which is also known as high pressure homogenization is one of the novel technologies that could be applied in food industry to obtain many beneficial outcomes. High pressure processing is another novel technique that is mainly playing the microbicidal effect. This work is concerned on the possibility of using microfluidization and high pressure processing in food industry based on the experimental findings. These techniques could be used as useful tools in the field of food science and technology.
文摘In this paper, the critical pressure pcrit and impeding pressure pimpe of the elemental evaporation were defined and studied based on the calculation of the relationship between the evaporation loss rate Nm and the chamber pressure p during melting of NiAl alloys. When the chamber pressure is lower than pcrit or higher than Pimpe Nm tends to be the maximum or minimum value and remains almost unchanged. However, declines sharply with the increase of the chamber pressure when pcrit<P<Pimpe. A method has been put forward to calculate the pcrit and pimpe of Al evaporation in a Ni-XAI (x=25-50 at. pct) melt. The calculation result shows that the pcrit or pimpe is a second-order function of the molar percentage of Al and the melting temperature.
文摘A new model was established to calculate the real vapor pressure of Al in the molten Ni-xAl (at.pct) (x=25;0) alloy. The effects of the holding time, chamber pressure, mole fraction of Al and melting temperature on the real vapor pressure of Al in the vacuum chamber were analyzed. Because of the impeding effect of the real vapor pressure on the evaporation loss rate, within a short time (less than 10 s), the real vapor pressure tends to a constant value. When the chamber pressure is less than the saturated vapor pressure of Al, the real vapor pressure of Al is equal to the chamber pressure. While when the chamber pressure is higher than the saturated vapor pressure, the real vapor pressure of Al approaches to the saturated vapor pressure of Al of the same condition.
基金supported by National Natural Science Foundation of China(Nos.51175123 and 51105112)National Science and Technology Major Project of China(No.2013ZX04006011-205)
文摘One of the major advantages of utilizing atmospheric pressure plasma processing (APPP) technology to fabricate ultra-precision optics is that there is no subsurface damage during the process. In APPP, the removal footprint and removal rate are critical to the capability and efficiency of the figuring of the optical surface. In this paper, an atmospheric plasma torch, which can work in both remote mode and contact mode, is presented. The footprints and the removal rates of both modes are compared by profilometer measurements. The influences of process recipes and substrate thickness for both modes are investigated through a series of experiments. When the substrate is thinner than 12 mm, the removal rate in contact mode is higher. However, the removal rate and width of the footprint decrease dramatically as the substrate thickness increases in contact mode.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175123 and 51105112)
文摘In order to get ultra-smooth fused silica surface without subsurface damage efficiently, the atmospheric pressure plasma processing( APPP) method has been developed. It is based on chemical reaction between active radicals excited by plasma and workpiece surface atoms,so the subsurface damage caused by contact stress can be avoided and atomic-level precision can be ensured. In this paper,based on the spectral quantitative analysis theory,the influence laws on material removal rate by the key factors of APPP including the flow rate of reaction gases,the input power,the processing distance and time are discussed. In addition,the results that APPP can remove the damaged surface layer and do not introduce secondary damage are proved via the nanoindentation technology.
基金financial assistance provided by the National Natural Science Foundation of China (Nos. B14021 and 51304209)the Science Foundation of Jiangsu (No. 16KJB580014)
文摘Energy and resources including coal, oil, and gas are in demand all over the world. Because these resources near the earth's surface have been exploited for many years, the extraction depth has increased.As mining shafts in the coal extraction process become deeper, especially in western China, an artificial freezing method is used and is concentrated in the fractured rock mass. The frost-heaving pressure(FHP)is directly related to the degree of damage of the fractured rock mass. This paper is focused on FHP during the freezing process, with emphasis on the frost-heaving phenomenon in engineering materials. A review of the frost phenomenon in the geotechnical engineering literature indicates that:(1) During the soil freezing process, the ice content that is influenced by unfrozen water and the freezing rate are the determining factors of FHP;(2) During the freezing process of rock and other porous media, the resulting cracks should be considered because the FHP may damage the crack structure;(3) The FHP in a joint rock mass is analyzed by the joint deformation in field and experimental tests and can be simulated by the equivalent expansion method including water migration and joint deformation.
基金supported by the Medical Key Technology Development Program,Nanjing Health Bureau (ZKK08010)
文摘This study was designed to measure the pressure distribution of the intervertebral disc under different degrees of distraction of the interspinous process, because of a suspicion that the degree of distraction of the spinous process may have a close relationship with the disc load share. Six human cadaver lumbar spine L2-L5 segments were loaded in flexion, neutral position, and extension. The L3-L4 disc load was measured at each position using pressure measuring films. Shape-memory interspinous process implants (SMID) with different spacer heights, ranging in size from 10 to 20 mm at 2 mm increments, were used. It was found that a SMID with a spacer height equal to the distance of the interspinous process in the neutral position can share the biomechanical disc load without a significant change of load in the anterior annulus. An interspinous process stabilizing device (IPD) would not be appropriate to use in those cases with serious spinal stenosis because the over-distraction of the interspinous process by the SMID would lead to overloading the anterior annulus which is a recognized cause of disc degeneration.
基金Supported by National Research Foundation of Korea(NRF)Korea Government(MSIT)(Grant No.2019R1F1A1058521)
文摘As energy crisis and environment pollution all around the world threaten the widespread use of fossil fuels,compressed natural gas(CNG)vehicles are explored as an alternative to the conventional gasoline powered vehicles.Because of the limited space available for the car,the composite pressure vessel(TypeⅡ)has been applied to the CNG vehicles to reach large capacity and weight lightening vehicles.High pressure vessel(TypeⅡ)is composed of a composite layer and a metal liner.The metal liner is formed by the deep drawing and ironing(D.D.I.)process,which is a complex process of deep drawing and ironing.The cylinder part is reinforced by composite layer wrapped through the filament winding process and is bonded to the liner by the curing process.In this study,an integrated design method was presented by establishing the techniques for FE analysis of entire processes(D.D.I.,filament winding and curing processes)to manufacture the CNG composite pressure vessel(TypeⅡ).Dimensions of the dies and the punches of the 1 st(cup drawing),2 nd(redrawing-ironing 1-ironing 2)and 3 rd(redrawing-ironing)stages were calculated theoretically,and shape of tractrix die to be satisfied with the minimum forming load was suggested for life improvement and manufacturing costs in the D.D.I.process.Thickness of the composite material was determined in the filament winding process,finally,conditions of the curing process(number of heating stage,curing temperature,heating rate and time)were proposed to reinforce adhesive strength between the composite layers.
文摘Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.
基金financially supported by the Renewable Energy and Hydrogen Projects in National Key Research & Development Program of China (2019YFB1505000)。
文摘An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.
文摘The author makes a brief review of the history and the status quo of high pressure hydrocracking catalysts/processes development in China and gives out some thoughts and suggestions on the prospect of the said technology.
基金The research is supported by The Science Research Project ofthe Education Department of Liaoning Province, P. R. China, No.05L294
文摘A new casting method, the vacuum-sealed mold casting under pressure, has been developed, and thin wall iron castings with high precision and smooth surface have been produced successfully with this casting method. The experimental results show that the liquid iron has a very excellent filling ability because a high negative pressure is formed in the mold cavity during filling process. The vacuum-sealed mold under pressure has very high compressive strength greater than 650 kPa, which is 3-4 times as high as that of the molds produced by high-pressure molding process or vacuum-sealed molding process.
文摘During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional circular mode has been appliedto the EPC process. The molding properties of unbonded sand obtained by this new vibration mode are investigated andcompared with those in the one-dimensional vertical mode. For adequate compaction of sand. the circular vibration mode ismore effective than the vertical mode. Sand became more fluidized by the circular vibration and the particle pressure coefficientwas close to unity The particle pressure coefficient, which is defined as the ratio of horizontal to vertical sand pressure, isresponsible for the effectiveness of sand filling.
基金National Natural Science Foundation of China under Grant Nos.51278160,51478155,51378147
文摘Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be characterized as a stationary non-Gaussian field. This paper reviews several simulation algorithms related to the Spectral Representation Method (SRM) and the Static Transformation Method (STM). Polynomial and Exponential transformation functions (PSTM and ESTM) are discussed. Deficiencies in current algorithms, with respect to accuracy, stability and efficiency, are analyzed, and the algorithms are improved for better practical application. In order to verify the improved algorithm, wind pressure fields on a large-span roof are simulated and compared with wind tunnel data. The simulation results fit well with the wind tunnel data, and the algorithm accuracy, stability and efficiency are shown to be better than those of current algorithms.