The leaching behavior of metals from a nickeliferous limonitic laterite ore was investigated by high pressure acid leaching process for the extraction of nickel and cobalt.The effects of sulfuric acid added,leaching t...The leaching behavior of metals from a nickeliferous limonitic laterite ore was investigated by high pressure acid leaching process for the extraction of nickel and cobalt.The effects of sulfuric acid added,leaching temperature,leaching time and liquid/solid(L/S) ratio on metals extraction were examined.More than 97% Ni,96% Co,93% Mn,95% Mg and less than 1% Fe are extracted under optimum conditions.Analysis of the high pressure acid leaching residue by chemical and XRD analysis indicates that the residual iron and sulfur are mainly present in phases of hematite and alunite,respectively.The high pressure leaching process provides a simple and efficient way for the high recovery of nickel and cobalt from laterite ore,leaving residue as a suitable iron resource.展开更多
To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures rangi...To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.展开更多
Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various det...Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.展开更多
To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy ...To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy transformation, and the form of leach residues were made by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The result shows that the vana-dium slag is composed of major phases of fayalite, titanomagnetite, and spinel. During the high pressure oxidative acid leaching process, the fayalite and spinel phases are gradually decomposed by sulfuric acid, causing the release of vanadium and iron in the solution. Meanwhile, unreacted silicon and titanium are enriched in the leach residues. With the initial concentration of sulfuric acid at 250 g·L^-1, a leaching tem-perature of 140℃, a leaching time of 50 min, a liquid-solid ratio of 10:1 mL·g^-1, and oxygen pressure at 0.2 MPa, the leaching rate of vana-dium reaches 97.69%.展开更多
The treatment of the Gacun complex Cu-Pb bulk concentrate with high Zn,Ag,etc.,by oxygen pressure acid leaching was studied.The pri-mary copper and leadminerals in the concentrate are tetrahedrite and galena.The treat...The treatment of the Gacun complex Cu-Pb bulk concentrate with high Zn,Ag,etc.,by oxygen pressure acid leaching was studied.The pri-mary copper and leadminerals in the concentrate are tetrahedrite and galena.The treatment of tetrahedrite was rarely studied,and most of silver occurred in themineral too.The optimum operating parameters of oxygen pressure acid leaching were established by conditional tests.Under these parameters,the result of pilot scale test showed that the leaching percentages of copper and zinc were separately as high as 98.9 wt.% and 94.9 wt.%,while lead and silver were transformed into sulfate and sulfide precipitations,respectively.The copper and zinc in lixivium were reclaimed by extraction-electrowinning and purification-electrowinning,respectively,and the lead and silver in the residue were reclaimed separately by carbonate transformation-silicofluoric acid leaching and thiourea leaching.展开更多
Effects of particle size of the zinc sulfide concentrate,leaching temperature,solid-to-liquid ratio and additive amount on pressure acid leaching process of the zinc sulfide concentrate were studied.The results indica...Effects of particle size of the zinc sulfide concentrate,leaching temperature,solid-to-liquid ratio and additive amount on pressure acid leaching process of the zinc sulfide concentrate were studied.The results indicate that the additive can improve the reaction kinetics and the conversion rate.And sulfur can be successfully separated from the zinc sulfide concentrate as elemental sulfur.The reasonable experiment parameters are obtained as follows:the leaching temperature 150℃,oxygen partial pressure 1 MPa,additive amount 1%,solid-to-liquid ratio 1:4,leaching time 2 h,initial sulfuric acid concentration 15%,and particle size less than 44μm.Under the optimum conditions,the leaching rate of the zinc can reach 95%and the reduction rate of the sulfur can reach 90%.展开更多
Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample.Sulfuric acid pressure leaching of zinc silicate ore was carried out to ...Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample.Sulfuric acid pressure leaching of zinc silicate ore was carried out to assess the effect of particle size,sulfuric acid concentration,pressure,reaction time and temperature on the extraction of zinc and the dissolution of silica.Under the optimum conditions employed,up to 99.25% of zinc extraction and 0.20% silica dissolution are obtained.The main minerals in leaching residue are quartz and small amounts of undissolved oxide minerals of iron,lead and aluminum are associated with quartz.展开更多
As clean energy,the microwave is commonly used to pretreat various ores.In this work,the microwave dielectric properties of limonitic laterite ore were measured by resonant cavity perturbation technique and the effect...As clean energy,the microwave is commonly used to pretreat various ores.In this work,the microwave dielectric properties of limonitic laterite ore were measured by resonant cavity perturbation technique and the effects from microwave were systematically investigated.Results indicated that limonitic laterite had high microwave absorbance.After microwave pretreatment,the microstructure of the laterite became less aggregated and more porous and the main phase transformed from goethite to hematite that improved leaching in nitric acid(1.2 kg HNO3/kg ore);Ni,Co,Fe,and Mg extraction ratios were 95.2%,98.1%,1.8%and 15%,respectively,after leaching for 60 min at 200°C and 500 r/min.Furthermore,in the process of goethite to hematite by microwave pretreatment,the nickel-containing mineral is activated,which makes nickel be leached easily.The leaching process has high Ni extraction ratio compared to that without microwave(82%)and conventional pretreatment(90.4%).Therefore,microwave pretreatment of limonitic laterite before nitric acid pressure leaching is an effective way to improve the selectivity and extraction of the leach.展开更多
Extraction of vanadium from black shale was attempted in pressure acid leaching.The chemical components of the sample obtained from Guizhou Province of China show that it contains 3.258%V2O5,52.880%SiO2 and 16.140%Al2...Extraction of vanadium from black shale was attempted in pressure acid leaching.The chemical components of the sample obtained from Guizhou Province of China show that it contains 3.258%V2O5,52.880%SiO2 and 16.140%Al2O3.Phase analyses of vanadium indicates vanadium mainly exists in the free oxide and mica.Vanadium contents in the two phases are 18%and 53%, respectively.The contents of V3 +,V 4+and V 5+are almost equal.Under the optimum parameters of one-step leaching(reaction time of 3 h,sulfuric addition of 25%,temperature of 150℃,liquid to solid ratio of 1.2 mL/g,catalyst(FeSO4)addition of 5%and size of 85%particle 0.074 mm),about 77%of vanadium is recovered.After two-step countercurrent leaching,the leach recovery of vanadium can reach above 90%.Air replacing oxygen is completely feasible.The impurity metals can dissolve into solution in different degrees.展开更多
The treatment of the Gacun complex Cu concentrate with high contents of Pb,Zn,Ag,etc by oxygen pressure acid leaching was studied.It is unusual that tetrahedrite,whose treatment was rarely studied,is the primary coppe...The treatment of the Gacun complex Cu concentrate with high contents of Pb,Zn,Ag,etc by oxygen pressure acid leaching was studied.It is unusual that tetrahedrite,whose treatment was rarely studied,is the primary copper mineral of the concentrates.Most of silver also occurs in the mineral.The optimum operating parameters of oxygen pressure acid leaching were established by conditional tests.Pilot scale test was carried out under the parameters,and the leaching rates of copper and zinc are as high as 97.10% and 89.83% while lead and silver are transformed into sulfate and sulfide respectively and stay in leaching residue.The copper and zinc in lixivium were reclaimed by extraction-electrowinning and purification-electrowinning,respectively,and the lead and silver in the residue were reclaimed separately by chloride leaching and thiourea leaching.The extraction rate of copper achieves 96%,and the leaching rates of lead and silver reach 90% and 95%,respectively.展开更多
The kinetics of oxygen pressure acid leaching marmatite with high indium content was studied. The effects of particle size, agitation rate, temperature, HSOconcentration, and oxygen partial pressure on leaching rate o...The kinetics of oxygen pressure acid leaching marmatite with high indium content was studied. The effects of particle size, agitation rate, temperature, HSOconcentration, and oxygen partial pressure on leaching rate of indium were investigated. The results show that when the agitation rate is above 600 r-min, its influence on indium leaching rate is insignificant. It is determined that the leaching rates increase with the increase in sulfuric acid concentration, temperature, partial oxygen pressure, and the decrease in particle size. Moreover, the results demonstrate that the process of indium leaching is controlled by interface chemical reaction, with apparent activation energy of 65.7 k J-mol. The apparent reaction orders of sulfuric acid and oxygen partial pressure are determined to be 0.749 and 1.260, respectively. The leaching reaction process follows shrinking unreacted core model. And finally, the kinetics model equation is established for indium.展开更多
The dissolution kinetics of vanadium trioxide in sulphuric acid-oxygen medium was examined. It was determined that the concentration of sulphuric acid and stirring speed above 800 r min 1 did not significantly affect ...The dissolution kinetics of vanadium trioxide in sulphuric acid-oxygen medium was examined. It was determined that the concentration of sulphuric acid and stirring speed above 800 r min 1 did not significantly affect vanadium extraction. The dissolution rate increased with increasing temperature and oxygen partial pressure, but decreased with increasing particle size. The dissolution kinetics was controlled by the chemical reaction at the surface with the estimated activation energy of 43.46 kJ·mol-1. The leaching mechanism was confirmed by characterizing vanadium trioxide and the dissolution residue using SEM-EDS analysis. Combined with thermodynamic calculation, the pressure leaching of vanadium trioxide in the temperature range (100 to 140 ℃) studied occurs as follows: V2O3 + O2 + H2SO4 = (VO2)2SO4 + H2O.展开更多
The pressure nitric acid leaching of alkali-pre- treated low-grade limonitic laterite, as well as removing impurity AI(III) and preparing intermediate product of nickel/cobalt sulphide from leaching liquor were inve...The pressure nitric acid leaching of alkali-pre- treated low-grade limonitic laterite, as well as removing impurity AI(III) and preparing intermediate product of nickel/cobalt sulphide from leaching liquor were investi- gated. After pretreatment, iron exists in the form of amorphous iron oxides, while nickel is adsorbed on the surface of iron oxides in the form of nickel oxide. The preferable pressure leaching conditions are determined as follows: leaching temperature of 458 K, leaching duration of 60 min, initial acidity of nitric acid of 1.90 mol.L-~ and liquid to solid ratio of 3:1 (volume to mass ratio). Under these conditions, the leaching efficiencies of Ni, Co and A1 are 95 %, 88 % and 55 %, respectively, and that of Fe is less than 1%. The loss rates of Ni and Co are 1.8 % and 1.5 %, respectively, during the step of removing impurity AI(III). The sulphide precipitation process produces the interim production of nickel/cobalt sulphides, recovering greater than 99 % of Ni and Co in the purified solution. The iron-rich (〉60 %) pressure leaching residue with low Cr, S can be further reclaimed as the raw materials for iron making.展开更多
High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufa...High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization.展开更多
文摘The leaching behavior of metals from a nickeliferous limonitic laterite ore was investigated by high pressure acid leaching process for the extraction of nickel and cobalt.The effects of sulfuric acid added,leaching temperature,leaching time and liquid/solid(L/S) ratio on metals extraction were examined.More than 97% Ni,96% Co,93% Mn,95% Mg and less than 1% Fe are extracted under optimum conditions.Analysis of the high pressure acid leaching residue by chemical and XRD analysis indicates that the residual iron and sulfur are mainly present in phases of hematite and alunite,respectively.The high pressure leaching process provides a simple and efficient way for the high recovery of nickel and cobalt from laterite ore,leaving residue as a suitable iron resource.
基金Project(2007CB613504)supported by the National Key Basic Research Program of ChinaProjects(51004033,50974035,51074047)supported by the National Natural Science Foundation of ChinaProject(2008BAB34B01)supported by National Science and Technology Support Plan of China during the 11th Five-Year Plan
文摘To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.
基金Project(2006AA06Z130)supported by the High-tech Research and Development Program of ChinaProject(50874053)supported by the National Natural Science Foundation of ChinaProject(2007GA010)supported by Science and Technology Bureau of Yunnan Province,China
文摘Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.
基金supported by the National High Technology Research and Development Program of China(No.2012AA062303)the National Natural Science Foundation of China(Nos.U1202274,51004033,and 51204040)the Doctoral Fund Project of China(No. 20120042110011)
文摘To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy transformation, and the form of leach residues were made by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The result shows that the vana-dium slag is composed of major phases of fayalite, titanomagnetite, and spinel. During the high pressure oxidative acid leaching process, the fayalite and spinel phases are gradually decomposed by sulfuric acid, causing the release of vanadium and iron in the solution. Meanwhile, unreacted silicon and titanium are enriched in the leach residues. With the initial concentration of sulfuric acid at 250 g·L^-1, a leaching tem-perature of 140℃, a leaching time of 50 min, a liquid-solid ratio of 10:1 mL·g^-1, and oxygen pressure at 0.2 MPa, the leaching rate of vana-dium reaches 97.69%.
基金the 11th Five-Year Plan of National Scientific and Technological Program of China (No.2007 BAB22B01)
文摘The treatment of the Gacun complex Cu-Pb bulk concentrate with high Zn,Ag,etc.,by oxygen pressure acid leaching was studied.The pri-mary copper and leadminerals in the concentrate are tetrahedrite and galena.The treatment of tetrahedrite was rarely studied,and most of silver occurred in themineral too.The optimum operating parameters of oxygen pressure acid leaching were established by conditional tests.Under these parameters,the result of pilot scale test showed that the leaching percentages of copper and zinc were separately as high as 98.9 wt.% and 94.9 wt.%,while lead and silver were transformed into sulfate and sulfide precipitations,respectively.The copper and zinc in lixivium were reclaimed by extraction-electrowinning and purification-electrowinning,respectively,and the lead and silver in the residue were reclaimed separately by carbonate transformation-silicofluoric acid leaching and thiourea leaching.
基金Project(20050145029)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(2005221012)supported by Science and Technology Talents Fund for Excellent Youth of Liaoning Province,China
文摘Effects of particle size of the zinc sulfide concentrate,leaching temperature,solid-to-liquid ratio and additive amount on pressure acid leaching process of the zinc sulfide concentrate were studied.The results indicate that the additive can improve the reaction kinetics and the conversion rate.And sulfur can be successfully separated from the zinc sulfide concentrate as elemental sulfur.The reasonable experiment parameters are obtained as follows:the leaching temperature 150℃,oxygen partial pressure 1 MPa,additive amount 1%,solid-to-liquid ratio 1:4,leaching time 2 h,initial sulfuric acid concentration 15%,and particle size less than 44μm.Under the optimum conditions,the leaching rate of the zinc can reach 95%and the reduction rate of the sulfur can reach 90%.
基金Project(2007CB613605) supported by the National Basic Research Program of China
文摘Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample.Sulfuric acid pressure leaching of zinc silicate ore was carried out to assess the effect of particle size,sulfuric acid concentration,pressure,reaction time and temperature on the extraction of zinc and the dissolution of silica.Under the optimum conditions employed,up to 99.25% of zinc extraction and 0.20% silica dissolution are obtained.The main minerals in leaching residue are quartz and small amounts of undissolved oxide minerals of iron,lead and aluminum are associated with quartz.
基金Project(51974025)supported by the National Natural Science Foundation of ChinaProject(2018IA055)supported by the International Cooperation Project of Key Research and Development Plan of Yunan Province,ChinaProject(JKY2019-09)supported by State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization,China。
文摘As clean energy,the microwave is commonly used to pretreat various ores.In this work,the microwave dielectric properties of limonitic laterite ore were measured by resonant cavity perturbation technique and the effects from microwave were systematically investigated.Results indicated that limonitic laterite had high microwave absorbance.After microwave pretreatment,the microstructure of the laterite became less aggregated and more porous and the main phase transformed from goethite to hematite that improved leaching in nitric acid(1.2 kg HNO3/kg ore);Ni,Co,Fe,and Mg extraction ratios were 95.2%,98.1%,1.8%and 15%,respectively,after leaching for 60 min at 200°C and 500 r/min.Furthermore,in the process of goethite to hematite by microwave pretreatment,the nickel-containing mineral is activated,which makes nickel be leached easily.The leaching process has high Ni extraction ratio compared to that without microwave(82%)and conventional pretreatment(90.4%).Therefore,microwave pretreatment of limonitic laterite before nitric acid pressure leaching is an effective way to improve the selectivity and extraction of the leach.
基金Project(2006AA06Z130)supported by the Hi-tech Research and Development Program of ChinaProject(2007GA010)supported by Yunnan Provincial Science and Technology Agency
文摘Extraction of vanadium from black shale was attempted in pressure acid leaching.The chemical components of the sample obtained from Guizhou Province of China show that it contains 3.258%V2O5,52.880%SiO2 and 16.140%Al2O3.Phase analyses of vanadium indicates vanadium mainly exists in the free oxide and mica.Vanadium contents in the two phases are 18%and 53%, respectively.The contents of V3 +,V 4+and V 5+are almost equal.Under the optimum parameters of one-step leaching(reaction time of 3 h,sulfuric addition of 25%,temperature of 150℃,liquid to solid ratio of 1.2 mL/g,catalyst(FeSO4)addition of 5%and size of 85%particle 0.074 mm),about 77%of vanadium is recovered.After two-step countercurrent leaching,the leach recovery of vanadium can reach above 90%.Air replacing oxygen is completely feasible.The impurity metals can dissolve into solution in different degrees.
基金Project(2007BAB22B01) supported by the National Science and Technology Pillar Program during the 11th Five-year Plan Period of China
文摘The treatment of the Gacun complex Cu concentrate with high contents of Pb,Zn,Ag,etc by oxygen pressure acid leaching was studied.It is unusual that tetrahedrite,whose treatment was rarely studied,is the primary copper mineral of the concentrates.Most of silver also occurs in the mineral.The optimum operating parameters of oxygen pressure acid leaching were established by conditional tests.Pilot scale test was carried out under the parameters,and the leaching rates of copper and zinc are as high as 97.10% and 89.83% while lead and silver are transformed into sulfate and sulfide respectively and stay in leaching residue.The copper and zinc in lixivium were reclaimed by extraction-electrowinning and purification-electrowinning,respectively,and the lead and silver in the residue were reclaimed separately by chloride leaching and thiourea leaching.The extraction rate of copper achieves 96%,and the leaching rates of lead and silver reach 90% and 95%,respectively.
基金financially supported by the National High-Tech Research and Development Program of China (No. 2012AA062303)the National Natural Science Foundation of China (Nos. U1402271, 51504059 and 51504058)
文摘The kinetics of oxygen pressure acid leaching marmatite with high indium content was studied. The effects of particle size, agitation rate, temperature, HSOconcentration, and oxygen partial pressure on leaching rate of indium were investigated. The results show that when the agitation rate is above 600 r-min, its influence on indium leaching rate is insignificant. It is determined that the leaching rates increase with the increase in sulfuric acid concentration, temperature, partial oxygen pressure, and the decrease in particle size. Moreover, the results demonstrate that the process of indium leaching is controlled by interface chemical reaction, with apparent activation energy of 65.7 k J-mol. The apparent reaction orders of sulfuric acid and oxygen partial pressure are determined to be 0.749 and 1.260, respectively. The leaching reaction process follows shrinking unreacted core model. And finally, the kinetics model equation is established for indium.
基金supported by the National Natural Science Foundation of China (No. 50874053)National High Technology Research and Development Program "863" Program of China (No. 2006AA06Z130)
文摘The dissolution kinetics of vanadium trioxide in sulphuric acid-oxygen medium was examined. It was determined that the concentration of sulphuric acid and stirring speed above 800 r min 1 did not significantly affect vanadium extraction. The dissolution rate increased with increasing temperature and oxygen partial pressure, but decreased with increasing particle size. The dissolution kinetics was controlled by the chemical reaction at the surface with the estimated activation energy of 43.46 kJ·mol-1. The leaching mechanism was confirmed by characterizing vanadium trioxide and the dissolution residue using SEM-EDS analysis. Combined with thermodynamic calculation, the pressure leaching of vanadium trioxide in the temperature range (100 to 140 ℃) studied occurs as follows: V2O3 + O2 + H2SO4 = (VO2)2SO4 + H2O.
基金financially supported by the National Natural Science Foundation of China (Nos. 51274044, 51304023, and U1302274)
文摘The pressure nitric acid leaching of alkali-pre- treated low-grade limonitic laterite, as well as removing impurity AI(III) and preparing intermediate product of nickel/cobalt sulphide from leaching liquor were investi- gated. After pretreatment, iron exists in the form of amorphous iron oxides, while nickel is adsorbed on the surface of iron oxides in the form of nickel oxide. The preferable pressure leaching conditions are determined as follows: leaching temperature of 458 K, leaching duration of 60 min, initial acidity of nitric acid of 1.90 mol.L-~ and liquid to solid ratio of 3:1 (volume to mass ratio). Under these conditions, the leaching efficiencies of Ni, Co and A1 are 95 %, 88 % and 55 %, respectively, and that of Fe is less than 1%. The loss rates of Ni and Co are 1.8 % and 1.5 %, respectively, during the step of removing impurity AI(III). The sulphide precipitation process produces the interim production of nickel/cobalt sulphides, recovering greater than 99 % of Ni and Co in the purified solution. The iron-rich (〉60 %) pressure leaching residue with low Cr, S can be further reclaimed as the raw materials for iron making.
基金Item Sponsored by National Torch Program Project of China(2011GH561685)
文摘High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization.