High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high prec...High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.展开更多
The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stat...The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stator flux orientation (SFO). The algorithm structure is simple to be implemented and cannot be influenced by motor parameters, The improved stator flux estimation is used to compensate errors caused by the low pass filter (LPF). A new speed regulator is designed to ensure the system working with the maximal torque in the transient state. The system simulation and the prototype experiment are made. Results show that the con- trol system has good dynamic and static performance.展开更多
A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are sele...A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.展开更多
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin...A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.展开更多
Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different...Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.展开更多
On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i...On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.展开更多
Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle,...Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.展开更多
This paper presents an analysis based on analytical method for solid rotor motors for determining the rotor eddy current losses due to the current harmonics of the stator winding. The accuracy of the analytical result...This paper presents an analysis based on analytical method for solid rotor motors for determining the rotor eddy current losses due to the current harmonics of the stator winding. The accuracy of the analytical results is verified by experiments.展开更多
Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based ...Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based on the three-phase logical no-circumfluence a.c./a.c. cycloconverter, the speeds of two 2500 kW double fed drive motors have been regulated by means of the vector control technology. The maximum operating speed of each motor- generator unit has been raised from 1488 rpm (revolutions per minute) to 1650 rpm and the released energy of each unit during a pulsed discharge can reach 500 MJ. As a result, the toroidal field system has the capacity to provide 2.8 tesla (T) in HL-2A experiments.展开更多
A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient...A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.展开更多
Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control mode...Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control model with the input frequency can significantly improve speed control performance.Step response of rotating speed is tested.Then,the transfer function model is identified through characteristic point method.Considering time-varying characteristics of the model parameters,the variables are fitted with frequency and speed as the independent variables,and the variable model of ultrasonic motor system is obtained,with consideration of the nonlinearity of ultrasonic motor system.The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor.展开更多
To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied...To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied to the speed controller of the vector control system,which combined the intelligent fractional integral with the proportion according to the variation of deviation.Compared with proportional integral(PI)and fractional-order proportional integral(FOPI)controllers,the IPIλcontroller achieved better control performance.The stimulation results indicate that the IPIλcontroller can not only track the given speed quickly and accurately,but also have better anti-interference and robustness for load and parameters variations.展开更多
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r...In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.展开更多
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the...Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.展开更多
单边短初级长次级直线感应电机己普遍应用于低速磁悬浮的驱动系统。由于在动态纵向边端效应影响下等效电路不对称,单边直线感应电机(single-sided linear inductionmotor,SLIM)的一些参数非线性变化。传统的应用于旋转电机的无速度...单边短初级长次级直线感应电机己普遍应用于低速磁悬浮的驱动系统。由于在动态纵向边端效应影响下等效电路不对称,单边直线感应电机(single-sided linear inductionmotor,SLIM)的一些参数非线性变化。传统的应用于旋转电机的无速度传感器方法不再适用。首先分析了SLIM的M/T轴等效电路,选择次级磁链作为速度观测器状态变量。根据李雅普诺夫系统稳定性判据,推导出适用于SLIM的无速度传感器辨识;然后,采用反馈广义积分观测器控制稳态辨识速度的双幅脉振幅值;引入虚拟期望变量(virtualdesiredvariable,VDV)法,利用估算速度参与SLIM的恒滑差频率矢量控制。仿真与实验对所提控制算法的有效性和实用性进行了验证,所得结论可为磁悬浮的无速度传感器控制提供参考。展开更多
The mathematical model of ultrasonic motor(USM)is the foundation of the motor high performance control.Considering the motor speed control requirements,the USM control model identification is established with frequenc...The mathematical model of ultrasonic motor(USM)is the foundation of the motor high performance control.Considering the motor speed control requirements,the USM control model identification is established with frequency as the independent variable.The frequency-speed control model of USM system is developed,thus laying foundation for the motor high performance control.The least square method and the extended least square method are used to identify the model.By comparing the results of the identification and measurement,and fitting the time-varying parameters of the model,one can show that the model obtained by using the extended least square method is reasonable and possesses high accuracy.Finally,the frequency-speed control model of USM contains the nonlinear information.展开更多
A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct...A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.展开更多
This paper deals with performance analysis and implementation of a three phase inverter fed induction motor (IM) drive system. The closed loop control scheme of the drive utilizes the Digital Phase Locked Loop (DPLL)....This paper deals with performance analysis and implementation of a three phase inverter fed induction motor (IM) drive system. The closed loop control scheme of the drive utilizes the Digital Phase Locked Loop (DPLL). The DPLL is safely implemented all around the well known integrated circuit DPLL 4046. An ex-perimental verification is carried out on one kw scalar controlled IM system drives for a wide range of speeds and loads appliance. This presents a simple and high performance solution for industrial applications.展开更多
文摘High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.
文摘The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stator flux orientation (SFO). The algorithm structure is simple to be implemented and cannot be influenced by motor parameters, The improved stator flux estimation is used to compensate errors caused by the low pass filter (LPF). A new speed regulator is designed to ensure the system working with the maximal torque in the transient state. The system simulation and the prototype experiment are made. Results show that the con- trol system has good dynamic and static performance.
文摘A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.
文摘A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.
文摘Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.
基金National Hi-tech Research and Development Program of China(863 Program,No.2008AA04Z116)and Natural Science Foundation of Hunan Province,China.
文摘On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.
文摘Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.
文摘This paper presents an analysis based on analytical method for solid rotor motors for determining the rotor eddy current losses due to the current harmonics of the stator winding. The accuracy of the analytical results is verified by experiments.
基金the Tenth-Five-Year Nuclear Energy Development of the Commission of Science and TechnologyNational Defense Industry of the China National Nuclear Corporation
文摘Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based on the three-phase logical no-circumfluence a.c./a.c. cycloconverter, the speeds of two 2500 kW double fed drive motors have been regulated by means of the vector control technology. The maximum operating speed of each motor- generator unit has been raised from 1488 rpm (revolutions per minute) to 1650 rpm and the released energy of each unit during a pulsed discharge can reach 500 MJ. As a result, the toroidal field system has the capacity to provide 2.8 tesla (T) in HL-2A experiments.
文摘A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.
基金supported by the National Natural Science Foundation of China(No.U1304501)
文摘Control model of ultrasonic motor is the foundation for high control performance.The frequency of driving voltage is commonly used as control variable in the speed control system of ultrasonic motor.Speed control model with the input frequency can significantly improve speed control performance.Step response of rotating speed is tested.Then,the transfer function model is identified through characteristic point method.Considering time-varying characteristics of the model parameters,the variables are fitted with frequency and speed as the independent variables,and the variable model of ultrasonic motor system is obtained,with consideration of the nonlinearity of ultrasonic motor system.The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor.
基金National Natural Science Foundation of China(No.61461023)Gansu Provincial Department of Education Project(No.2016B-036)
文摘To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied to the speed controller of the vector control system,which combined the intelligent fractional integral with the proportion according to the variation of deviation.Compared with proportional integral(PI)and fractional-order proportional integral(FOPI)controllers,the IPIλcontroller achieved better control performance.The stimulation results indicate that the IPIλcontroller can not only track the given speed quickly and accurately,but also have better anti-interference and robustness for load and parameters variations.
文摘In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.
基金supported in part by the Liaoning Provincial Department of Education Key Research Project under JYT2020160by the Liaoning Provincial Department of Education General Project under LJKZ0224。
文摘Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.
文摘单边短初级长次级直线感应电机己普遍应用于低速磁悬浮的驱动系统。由于在动态纵向边端效应影响下等效电路不对称,单边直线感应电机(single-sided linear inductionmotor,SLIM)的一些参数非线性变化。传统的应用于旋转电机的无速度传感器方法不再适用。首先分析了SLIM的M/T轴等效电路,选择次级磁链作为速度观测器状态变量。根据李雅普诺夫系统稳定性判据,推导出适用于SLIM的无速度传感器辨识;然后,采用反馈广义积分观测器控制稳态辨识速度的双幅脉振幅值;引入虚拟期望变量(virtualdesiredvariable,VDV)法,利用估算速度参与SLIM的恒滑差频率矢量控制。仿真与实验对所提控制算法的有效性和实用性进行了验证,所得结论可为磁悬浮的无速度传感器控制提供参考。
基金supported by the National Natural Science Foundation of China(No.U1304501)
文摘The mathematical model of ultrasonic motor(USM)is the foundation of the motor high performance control.Considering the motor speed control requirements,the USM control model identification is established with frequency as the independent variable.The frequency-speed control model of USM system is developed,thus laying foundation for the motor high performance control.The least square method and the extended least square method are used to identify the model.By comparing the results of the identification and measurement,and fitting the time-varying parameters of the model,one can show that the model obtained by using the extended least square method is reasonable and possesses high accuracy.Finally,the frequency-speed control model of USM contains the nonlinear information.
文摘A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.
文摘This paper deals with performance analysis and implementation of a three phase inverter fed induction motor (IM) drive system. The closed loop control scheme of the drive utilizes the Digital Phase Locked Loop (DPLL). The DPLL is safely implemented all around the well known integrated circuit DPLL 4046. An ex-perimental verification is carried out on one kw scalar controlled IM system drives for a wide range of speeds and loads appliance. This presents a simple and high performance solution for industrial applications.